Java并发编程-重入锁

简介: 章节目录什么是重入锁底层实现-如何实现重入公平与非公平获取锁的区别与底层实现1.什么是重入锁1.1 重入锁的定义重入锁ReentrantLock,支持重入的锁,表示一个线程对资源的重复加锁。

章节目录

  • 什么是重入锁
  • 底层实现-如何实现重入
  • 公平与非公平获取锁的区别与底层实现

1.什么是重入锁

1.1 重入锁的定义

重入锁ReentrantLock,支持重入的锁,表示一个线程对资源的重复加锁。

1.2 重入锁的特性

1.重进入
2.非/公平性获取锁

1.3 自定义同步器Mutex 的缺陷

当线程调用Mutex的lock()方法获取锁之后,再次调用lock()方法,该线程将会被
自己阻塞,原因是Mutex在实现tryAcquire(int acquires)方法时没有考虑占有锁
的线程再次获取锁的场景。

1.4 ReentrantLock & synchronized 关键字

1.synchronized 关键字支持隐式的重进入
2.ReentrantLock 在调用lock() 方法时,已经获取到锁的线程,能够再次调用
lock()方法获取到锁而不被阻塞,即可支持重入

1.4 公平性获取锁

公平性 含义
公平性获取锁 在绝对时间上,先对锁进行获取请求的请求一定先被满足,那么这个锁就是公平的
非公平性获取锁 无上述限制

事实上 公平锁机制往往没有非公平性机制获取锁的效率高,因为会牵扯到频繁的上下文切换,但公平锁可以减少饥饿发生的概率,等待越久的请求越能得到优先满足。

2. 底层实现-如何实现重入

重进入是指任意线程在获取到锁之后能够再次获取该锁,而不被阻塞,改特性实现需要解决以下两个问题:

  • 线程再次获取锁
    线程再次获取锁。锁需要去识别获取锁的线程是否为当前占据锁的线程,如果是,则再次成功获取。
    
  • 锁的最终释放
    线程重复n次获取了锁,随后在第n次释放锁,锁的释放要求锁对于被获取递
    增的次数进行递减操作,当计数==0时表示锁已经成功释放。
    

2.1 可重入锁的源码
非公平性获取同步状态(锁)的 nonfairTryAcquire() 方法

    final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

该方法增加了再次获取同步状态的处理逻辑:通过判断当前线程是否为获取锁的线程来决定获取操作是否成功,如果是获取锁的线程的再次请求 则将同步状态值计数器进行递增并返回true,表示获取同步状态成功。

释放同步状态(锁)

protected final boolean tryRelease(int releases) {
            int c = getState() - releases;
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }

如果该锁被获取了n次,那么前n-1此tryRelease(int release) 方法必须返回false,而只有同步状态完全释放了,才能返回true。

3.公平与非公平获取锁的区别与底层实现

3.1 公平性获取锁的底层实现
公平性获取锁即按照客观时间顺序,FIFO方式获取同步状态
具体源码如下所示

  protected final boolean tryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

公平性获取同步状态的与非公平性获取同步状态的区别在于hasQueuedPredecessors()方法的使用,即加入了当前节点是否有前驱节点的判断,如果该方法返回true,则表示有线程比当前线程更早的加入到同步队列(更早的请求获取锁),因此需要等待前驱线程获取并释放锁之后才能继续获取锁。

非公平性获取锁的实现

  • 公平性获取锁保证了锁的获取顺序按照FIFO原则,不会出现线程“饥饿”的现象,但代价是进行大量的线程切换。
  • 非公平性锁虽然可能造成线程饥饿,但是有极少的线程切换,保证了其更大的吞吐量。
目录
相关文章
|
1月前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
34 0
|
1月前
|
Java 程序员
Java编程中的异常处理:从基础到高级
在Java的世界中,异常处理是代码健壮性的守护神。本文将带你从异常的基本概念出发,逐步深入到高级用法,探索如何优雅地处理程序中的错误和异常情况。通过实际案例,我们将一起学习如何编写更可靠、更易于维护的Java代码。准备好了吗?让我们一起踏上这段旅程,解锁Java异常处理的秘密!
|
17天前
|
存储 缓存 Java
Java 并发编程——volatile 关键字解析
本文介绍了Java线程中的`volatile`关键字及其与`synchronized`锁的区别。`volatile`保证了变量的可见性和一定的有序性,但不能保证原子性。它通过内存屏障实现,避免指令重排序,确保线程间数据一致。相比`synchronized`,`volatile`性能更优,适用于简单状态标记和某些特定场景,如单例模式中的双重检查锁定。文中还解释了Java内存模型的基本概念,包括主内存、工作内存及并发编程中的原子性、可见性和有序性。
Java 并发编程——volatile 关键字解析
|
21天前
|
算法 Java 调度
java并发编程中Monitor里的waitSet和EntryList都是做什么的
在Java并发编程中,Monitor内部包含两个重要队列:等待集(Wait Set)和入口列表(Entry List)。Wait Set用于线程的条件等待和协作,线程调用`wait()`后进入此集合,通过`notify()`或`notifyAll()`唤醒。Entry List则管理锁的竞争,未能获取锁的线程在此排队,等待锁释放后重新竞争。理解两者区别有助于设计高效的多线程程序。 - **Wait Set**:线程调用`wait()`后进入,等待条件满足被唤醒,需重新竞争锁。 - **Entry List**:多个线程竞争锁时,未获锁的线程在此排队,等待锁释放后获取锁继续执行。
61 12
|
17天前
|
存储 安全 Java
Java多线程编程秘籍:各种方案一网打尽,不要错过!
Java 中实现多线程的方式主要有四种:继承 Thread 类、实现 Runnable 接口、实现 Callable 接口和使用线程池。每种方式各有优缺点,适用于不同的场景。继承 Thread 类最简单,实现 Runnable 接口更灵活,Callable 接口支持返回结果,线程池则便于管理和复用线程。实际应用中可根据需求选择合适的方式。此外,还介绍了多线程相关的常见面试问题及答案,涵盖线程概念、线程安全、线程池等知识点。
101 2
|
2月前
|
缓存 Java 开发者
Java多线程编程的陷阱与最佳实践####
本文深入探讨了Java多线程编程中常见的陷阱,如竞态条件、死锁和内存一致性错误,并提供了实用的避免策略。通过分析典型错误案例,本文旨在帮助开发者更好地理解和掌握多线程环境下的编程技巧,从而提升并发程序的稳定性和性能。 ####
|
1月前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
1月前
|
Java 调度
Java中的多线程编程与并发控制
本文深入探讨了Java编程语言中多线程编程的基础知识和并发控制机制。文章首先介绍了多线程的基本概念,包括线程的定义、生命周期以及在Java中创建和管理线程的方法。接着,详细讲解了Java提供的同步机制,如synchronized关键字、wait()和notify()方法等,以及如何通过这些机制实现线程间的协调与通信。最后,本文还讨论了一些常见的并发问题,例如死锁、竞态条件等,并提供了相应的解决策略。
53 3
|
2月前
|
缓存 Java 开发者
Java多线程并发编程:同步机制与实践应用
本文深入探讨Java多线程中的同步机制,分析了多线程并发带来的数据不一致等问题,详细介绍了`synchronized`关键字、`ReentrantLock`显式锁及`ReentrantReadWriteLock`读写锁的应用,结合代码示例展示了如何有效解决竞态条件,提升程序性能与稳定性。
188 6
|
1月前
|
开发框架 安全 Java
Java 反射机制:动态编程的强大利器
Java反射机制允许程序在运行时检查类、接口、字段和方法的信息,并能操作对象。它提供了一种动态编程的方式,使得代码更加灵活,能够适应未知的或变化的需求,是开发框架和库的重要工具。
56 4
下一篇
开通oss服务