Java并发编程-读写锁(ReentrantReadWriteLock)

简介: 章节目录ReentrantReadWriteLock 特性读写锁接口示例读写锁的实现分析读写状态设计写锁的释放与获取读锁的释放与获取锁降级1. ReentrantReadWriteLock 特性1.1 读写锁定义读写锁维护了一对锁,一个读锁,一个写锁,通过分离读锁写锁,使得并发性相比一般的排他锁有了很大提升。

章节目录

  • ReentrantReadWriteLock 特性
  • 读写锁接口示例
  • 读写锁的实现分析
    • 读写状态设计
    • 写锁的释放与获取
    • 读锁的释放与获取
    • 锁降级

1. ReentrantReadWriteLock 特性

1.1 读写锁定义

读写锁维护了一对锁,一个读锁,一个写锁,通过分离读锁写锁,使得并发性相比一般的排他锁有了很大提升。

1.2 读写锁使用场景

1.读写锁比较适用于读多写少的应用场景。
2.读写锁在统一时刻可以允许多个读线程访问,但是在写线程访问时,所有的读线程、其他写线程均被阻塞。

1.3 读写锁的优点

1.保证写操作对读操作的可见性
2.在读多写少的情况下的并发性的提升
3.读写锁简化可读写交互场景的编程方式

2.读写锁接口示例

如下为使用读写锁操作缓存的示例

package org.seckill.lock;

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

public class ReadWriteCache {
    //充当cache
    static Map<String, Object> map = new HashMap<String, Object>();
    //实例化读写锁对象
    static ReentrantReadWriteLock reentrantReadWriteLock =
            new ReentrantReadWriteLock();
    //实例化读锁
    static Lock r = reentrantReadWriteLock.readLock();
    //实例化写锁
    static Lock w = reentrantReadWriteLock.writeLock();

    //获取缓存中值
    public static final Object get(String key) {
        r.lock();
        try {
            return map.get(key);
        } finally {
            r.unlock();
        }
    }

    //写缓存中值,并返回对应value
    public static final Object set(String key, Object obj) {
        w.lock();
        try {
            return map.put(key, obj);
        } finally {
            w.unlock();
        }
    }

    //清空所有内容
    public static final void clear() {
        w.lock();
        try {
            map.clear();
        } finally {
            w.unlock();
        }
    }
}

如上所示:

1.Cache组合一个非线程安全的HashMap做为缓存实现,同时使用读写锁的
读锁和写锁来保证Cache是线程安全的。
2.在读操作get(String key)方法中,需要使用读锁,这使得并发访问该方法时不
会被阻塞。
3.写锁put(String key,Object object)方法和clear()方法,在更新HashMap时必须
提前获取写锁,当获取写锁后,其他线程对于读锁和写锁的获取都被阻塞,只
有写锁释放之后,其他的读写操作才能继续操作,也就是说写锁其实是排他
锁、互斥锁。
4.最终,读锁提升了读操作的并发性,也保证了每次写操作对所有后续读操作
的可见性,同时简化了编程方式,对应1.3
 

3.读写锁的实现分析

3.1 读写状态设计

1.读写锁同样依赖自定义同步器实现同步功能
2.ReentrantLock 中同步状态表示锁被一个线程重复获取的次数。
3.读写锁自定义同步器需要在同步状态上维护多个读线程和一个写线程的状态。
4.读写锁同步器采用在一个4字节的整形变量上使用 按位切割 的方式来维护读
写线程的同步状态。高16位用来表示读,低16位用来表示写。
5.写状态增加1,表示当前线程获取写锁,则 Status = S(当前同步状态)+1,当读
状态加1时,Status = S+(1<<16)

3.2 写锁的获取与释放
如下源码所示:

 protected final boolean tryAcquire(int acquires) {
            /*
             * Walkthrough:
             * 1. If read count nonzero or write count nonzero
             *    and owner is a different thread, fail.
             * 2. If count would saturate, fail. (This can only
             *    happen if count is already nonzero.)
             * 3. Otherwise, this thread is eligible for lock if
             *    it is either a reentrant acquire or
             *    queue policy allows it. If so, update state
             *    and set owner.
             */
            Thread current = Thread.currentThread();
            int c = getState();
            //获取独占锁(写锁)的被获取的数量
            int w = exclusiveCount(c);
            if (c != 0) {
                // (Note: if c != 0 and w == 0 then shared count != 0)
                //1.如果同步状态不为0,且写状态为0,则表示当前同步状态被读锁获取
                //2.或者当前拥有写锁的线程不是当前线程
                if (w == 0 || current != getExclusiveOwnerThread())
                    return false;
                if (w + exclusiveCount(acquires) > MAX_COUNT)
                    throw new Error("Maximum lock count exceeded");
                // Reentrant acquire
                setState(c + acquires);
                return true;
            }
            if (writerShouldBlock() ||
                !compareAndSetState(c, c + acquires))
                return false;
            setExclusiveOwnerThread(current);
            return true;
        }

3.3 读锁的释放与获取

protected final int tryAcquireShared(int unused) {
    for(;;) {
        int c = getState();
        int nextc = c + (1<<16);
        if(nextc < c) {
           throw new Error("Maxumum lock count exceeded");
        }
        if(exclusiveCount(c)!=0 && owner != Thread.currentThread())
           return -1;
        if(compareAndSetState(c,nextc))
           return 1;
    }
}

如果其他线程获取了写锁,则当前线程获取读锁失败,进入等待状态。
如果当前线程获取了写锁或者写锁未被获取,则当前线程安全,依靠CAS保证增加读状态,成功获取锁。

3.4 锁降级

锁降级是指当前把持住写锁,再获取到读锁,随后释放(先前拥有的)写锁的过程。

锁降级过程中的读锁的获取是否有必要,答案是必要的。主要是为了保证数据的可见性,如果当前线程不获取读锁而直接释放写锁,假设此刻另一个线程获取的写锁,并修改了数据,那么当前线程就步伐感知到线程T的数据更新,如果当前线程遵循锁降级的步骤,那么线程T将会被阻塞,直到当前线程使数据并释放读锁之后,线程T才能获取写锁进行数据更新。

目录
相关文章
|
1天前
|
Java 数据库
JAVA并发编程-一文看懂全部锁机制
曾几何时,面试官问:java都有哪些锁?小白,一脸无辜:用过的有synchronized,其他不清楚。面试官:回去等通知! 今天我们庖丁解牛说说,各种锁有什么区别、什么场景可以用,通俗直白的分析,让小白再也不怕面试官八股文拷打。
|
1天前
|
Java
深入理解Java中的多线程编程
本文将探讨Java多线程编程的核心概念和技术,包括线程的创建与管理、同步机制以及并发工具类的应用。我们将通过实例分析,帮助读者更好地理解和应用Java多线程编程,提高程序的性能和响应能力。
13 4
|
1天前
|
安全 Java 开发者
Java并发编程中的锁机制解析
本文深入探讨了Java中用于管理多线程同步的关键工具——锁机制。通过分析synchronized关键字和ReentrantLock类等核心概念,揭示了它们在构建线程安全应用中的重要性。同时,文章还讨论了锁机制的高级特性,如公平性、类锁和对象锁的区别,以及锁的优化技术如锁粗化和锁消除。此外,指出了在高并发环境下锁竞争可能导致的问题,并提出了减少锁持有时间和使用无锁编程等策略来优化性能的建议。最后,强调了理解和正确使用Java锁机制对于开发高效、可靠并发应用程序的重要性。
9 3
|
1天前
|
安全 Java API
JAVA并发编程JUC包之CAS原理
在JDK 1.5之后,Java API引入了`java.util.concurrent`包(简称JUC包),提供了多种并发工具类,如原子类`AtomicXX`、线程池`Executors`、信号量`Semaphore`、阻塞队列等。这些工具类简化了并发编程的复杂度。原子类`Atomic`尤其重要,它提供了线程安全的变量更新方法,支持整型、长整型、布尔型、数组及对象属性的原子修改。结合`volatile`关键字,可以实现多线程环境下共享变量的安全修改。
|
5天前
|
存储 缓存 安全
【Java面试题汇总】多线程、JUC、锁篇(2023版)
线程和进程的区别、CAS的ABA问题、AQS、哪些地方使用了CAS、怎么保证线程安全、线程同步方式、synchronized的用法及原理、Lock、volatile、线程的六个状态、ThreadLocal、线程通信方式、创建方式、两种创建线程池的方法、线程池设置合适的线程数、线程安全的集合?ConcurrentHashMap、JUC
【Java面试题汇总】多线程、JUC、锁篇(2023版)
|
16天前
|
监控 Java 调度
【Java学习】多线程&JUC万字超详解
本文详细介绍了多线程的概念和三种实现方式,还有一些常见的成员方法,CPU的调动方式,多线程的生命周期,还有线程安全问题,锁和死锁的概念,以及等待唤醒机制,阻塞队列,多线程的六种状态,线程池等
75 6
【Java学习】多线程&JUC万字超详解
|
9天前
|
Java 调度 开发者
Java并发编程:深入理解线程池
在Java的世界中,线程池是提升应用性能、实现高效并发处理的关键工具。本文将深入浅出地介绍线程池的核心概念、工作原理以及如何在实际应用中有效利用线程池来优化资源管理和任务调度。通过本文的学习,读者能够掌握线程池的基本使用技巧,并理解其背后的设计哲学。
|
9天前
|
缓存 监控 Java
Java中的并发编程:理解并应用线程池
在Java的并发编程中,线程池是提高应用程序性能的关键工具。本文将深入探讨如何有效利用线程池来管理资源、提升效率和简化代码结构。我们将从基础概念出发,逐步介绍线程池的配置、使用场景以及最佳实践,帮助开发者更好地掌握并发编程的核心技巧。
|
5天前
|
Java 调度 开发者
Java中的多线程基础及其应用
【9月更文挑战第13天】本文将深入探讨Java中的多线程概念,从基本理论到实际应用,带你一步步了解如何有效使用多线程来提升程序的性能。我们将通过实际代码示例,展示如何在Java中创建和管理线程,以及如何利用线程池优化资源管理。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧,帮助你更好地理解和应用多线程编程。
|
10天前
|
缓存 监控 Java
java中线程池的使用
java中线程池的使用