【20160924】GOCVHelper 图像增强部分(3)

简介: //顶帽去光差,radius为模板半径     Mat moveLightDiff(Mat src,int radius){         Mat dst;         Mat srcclone = src.
//顶帽去光差,radius为模板半径
    Mat moveLightDiff(Mat src,int radius){
        Mat dst;
        Mat srcclone = src.clone();
        Mat mask = Mat::zeros(radius*2,radius*2,CV_8U);
        circle(mask,Point(radius,radius),radius,Scalar(255),-1);
        //顶帽
        erode(srcclone,srcclone,mask);
        dilate(srcclone,srcclone,mask);
        dst =  src - srcclone;
        return dst;

    }

算法来自于冈萨雷斯《数字图像处理教程》形态学篇章。完全按照教程实现,具备一定作用。
 
    //将 DEPTH_8U型二值图像进行细化  经典的Zhang并行快速细化算法
    //细化算法
    void thin(const Mat &srcMat &dstconst int iterations){
        const int height =src.rows -1;
        const int width  =src.cols -1;
        //拷贝一个数组给另一个数组
        if(src.data != dst.data)
            src.copyTo(dst);
        int n = 0,i = 0,j = 0;
        Mat tmpImg;
        uchar *pU, *pC, *pD;
        bool isFinished =FALSE;
        for(n=0; n<iterationsn++){
            dst.copyTo(tmpImg); 
            isFinished =FALSE;   //一次 先行后列扫描 开始
            //扫描过程一 开始
            for(i=1; i<height;  i++) {
                pU = tmpImg.ptr<uchar>(i-1);
                pC = tmpImg.ptr<uchar>(i);
                pD = tmpImg.ptr<uchar>(i+1);
                for(int j=1; j<widthj++){
                    if(pC[j] > 0){
                        int ap=0;
                        int p2 = (pU[j] >0);
                        int p3 = (pU[j+1] >0);
                        if (p2==0 && p3==1)
                            ap++;
                        int p4 = (pC[j+1] >0);
                        if(p3==0 && p4==1)
                            ap++;
                        int p5 = (pD[j+1] >0);
                        if(p4==0 && p5==1)
                            ap++;
                        int p6 = (pD[j] >0);
                        if(p5==0 && p6==1)
                            ap++;
                        int p7 = (pD[j-1] >0);
                        if(p6==0 && p7==1)
                            ap++;
                        int p8 = (pC[j-1] >0);
                        if(p7==0 && p8==1)
                            ap++;
                        int p9 = (pU[j-1] >0);
                        if(p8==0 && p9==1)
                            ap++;
                        if(p9==0 && p2==1)
                            ap++;
                        if((p2+p3+p4+p5+p6+p7+p8+p9)>1 && (p2+p3+p4+p5+p6+p7+p8+p9)<7){
                            if(ap==1){
                                if((p2*p4*p6==0)&&(p4*p6*p8==0)){                           
                                    dst.ptr<uchar>(i)[j]=0;
                                    isFinished =TRUE;                            
                                }
                            }
                        }                    
                    }
 
                } //扫描过程一 结束
                dst.copyTo(tmpImg); 
                //扫描过程二 开始
                for(i=1; i<height;  i++){
                    pU = tmpImg.ptr<uchar>(i-1);
                    pC = tmpImg.ptr<uchar>(i);
                    pD = tmpImg.ptr<uchar>(i+1);
                    for(int j=1; j<widthj++){
                        if(pC[j] > 0){
                            int ap=0;
                            int p2 = (pU[j] >0);
                            int p3 = (pU[j+1] >0);
                            if (p2==0 && p3==1)
                                ap++;
                            int p4 = (pC[j+1] >0);
                            if(p3==0 && p4==1)
                                ap++;
                            int p5 = (pD[j+1] >0);
                            if(p4==0 && p5==1)
                                ap++;
                            int p6 = (pD[j] >0);
                            if(p5==0 && p6==1)
                                ap++;
                            int p7 = (pD[j-1] >0);
                            if(p6==0 && p7==1)
                                ap++;
                            int p8 = (pC[j-1] >0);
                            if(p7==0 && p8==1)
                                ap++;
                            int p9 = (pU[j-1] >0);
                            if(p8==0 && p9==1)
                                ap++;
                            if(p9==0 && p2==1)
                                ap++;
                            if((p2+p3+p4+p5+p6+p7+p8+p9)>1 && (p2+p3+p4+p5+p6+p7+p8+p9)<7){
                                if(ap==1){
                                    if((p2*p4*p8==0)&&(p2*p6*p8==0)){                           
                                        dst.ptr<uchar>(i)[j]=0;
                                        isFinished =TRUE;                            
                                    }
                                }
                            }                    
                        }
                    }
                } //一次 先行后列扫描完成          
                //如果在扫描过程中没有删除点,则提前退出
                if(isFinished ==FALSE)
                    break
            }
        }
    }
#end of thin
细化算法,在处理毛笔字一类的时候效果很好。使用的过程中,注意需要保留的部分要处理为白色,也就是scalar(255)
 





目前方向:图像拼接融合、图像识别 联系方式:jsxyhelu@foxmail.com
目录
相关文章
|
算法
【20160924】GOCVHelper 图像增强部分(2)
   //填充孔洞     //fillholes     Mat fillHoles(Mat src){         Mat dst = getInnerHoles(src);         threshold(dst,dst,0,255,THRESH_BINARY_INV); ...
869 0
|
算法 计算机视觉
【20160924】GOCVHelper 图像增强部分(4)
//使得rect区域半透明     Mat translucence(Mat src,Rect rect,int idepth){         Mat dst = src.clone();         Mat roi = dst(rect);         roi += cv::Scalar(idepth,idepth,idepth);         return dst;     }   将选择的区域打上变成半透明。
894 0
|
算法 计算机视觉
【20160924】GOCVHelper 图像增强部分(1)
图像增强是图像处理的第一步。这里集成了一些实际使用过程中有用的函数。   //读取灰度或彩色图片到灰度     Mat imread2gray(string path){         Mat src = imread(path);         Mat srcClone = src.
854 0
|
9月前
|
机器学习/深度学习 算法
低光图像增强
这篇摘要讨论了低光照图像增强技术,涉及HDRNet、GAN、轻量化伪影、语义分割网络和Retinex等方法。核心任务是提升图像亮度和细节。方法包括分布映射(如伽马矫正、直方图均衡化)、模型优化(Retinex理论)和深度学习(亮度增强与噪声去除)。传统方法不依赖数据,但可能产生伪影;深度学习方法需大量训练数据,无监督学习更优。不足之处在于缺乏成对数据集和精确标签。
202 1
【20160924】GOCVHelper 图像增强部分(5)
// Multiply 正片叠底 void Multiply(Mat& src1, Mat& src2, Mat& dst) {     for(int index_row=0; index_row
689 0
|
编解码 人工智能 Python
AugLy图像增强方法
AugLy图像增强方法
302 0
|
算法 计算机视觉
图像增强—图像锐化
图像增强—图像锐化
图像增强—图像锐化
|
计算机视觉
图像增强技术总结
图像增强技术总结(老师突然布置的总结作业)(水一期博客)
818 0
图像增强技术总结
|
9月前
halcon的灰度变换(图像增强)
halcon的灰度变换(图像增强)
529 1
|
8月前
|
算法 计算机视觉
图像处理之基于高斯金字塔的图像融合
图像处理之基于高斯金字塔的图像融合
67 3

热门文章

最新文章