【20160924】GOCVHelper 图像处理部分(3)

简介: //根据轮廓的圆的特性进行选择     vector selectShapeCircularity(Mat src,Mat& draw,vector contours,float minvalue,float maxvalue){         vector result_contours;         draw = Mat::zeros(src.
//根据轮廓的圆的特性进行选择
    vector<VPselectShapeCircularity(Mat src,Matdraw,vector<VPcontours,float minvalue,float maxvalue){
        vector<VPresult_contours;
        draw = Mat::zeros(src.rows,src.cols,CV_8UC3);
        for (int i=0;i<contours.size();i++){
            float fcompare = calculateCircularity(contours[i]);
            if (fcompare >=minvalue && fcompare <=maxvalue)
                result_contours.push_back(contours[i]);
        }
        for (int i=0;i<result_contours.size();i++){
            Scalar  color  = Scalar(rng.uniform(0,255),rng.uniform(0,255),rng.uniform(0,255));
            drawContours(draw,result_contours,i,color,-1);
        }
        return result_contours;
    }
    vector<VPselectShapeCircularity(vector<VPcontours,float minvalue,float maxvalue){
        vector<VPresult_contours;
        for (int i=0;i<contours.size();i++){
            float fcompare = calculateCircularity(contours[i]);
            if (fcompare >=minvalue && fcompare <=maxvalue)
                result_contours.push_back(contours[i]);
        }
        return result_contours;
    }
    //计算轮廓的圆的特性
    float calculateCircularity(VP contour){
        Point2f center;
        float radius = 0;
        minEnclosingCircle((Mat)contour,center,radius);
        //以最小外接圆半径作为数学期望,计算轮廓上各点到圆心距离的标准差
        float fsum = 0;
        float fcompare = 0;
        for (int i=0;i<contour.size();i++){   
            Point2f ptmp = contour[i];
            float fdistenct = sqrt((float)((ptmp.x - center.x)*(ptmp.x - center.x)+(ptmp.y - center.y)*(ptmp.y-center.y)));
            float fdiff = abs(fdistenct - radius);
            fsum = fsum + fdiff;
        }
        fcompare = fsum/(float)contour.size();
        return fcompare;
    }
 
    //返回两点之间的距离
    float getDistance(Point2f f1,Point2f f2)
    {
        return sqrt((float)(f1.x - f2.x)*(f1.x - f2.x) + (f1.y -f2.y)*(f1.yf2.y));

    }

基于Opencv论坛上提供的关于圆的尺度的评判算法,编写Opencv的圆的特性判断算法。主要就是“ 以最小外接圆半径作为数学期望,计算轮廓上各点到圆心距离的标准差 ”这个标准差达到一定的范围,则可以认定轮廓是为圆形的。
轮廓处理的两种方法在实际使用的过程中,用途非常广泛。
 
//投影到x或Y轴上,上波形为vup,下波形为vdown,gap为误差间隔
    void projection2(Mat src,vector<int>& vup,vector<int>& vdown,int direction,int gap){
        Mat tmp = src.clone();
        vector<intvdate;
        if (DIRECTION_X == direction){
            for (int i=0;i<tmp.cols;i++){
                Mat data = tmp.col(i);
                int itmp = countNonZero(data);
                vdate.push_back(itmp);
            }
        }else{
            for (int i=0;i<tmp.rows;i++){
                Mat data = tmp.row(i);
                int itmp = countNonZero(data);
                vdate.push_back(itmp);
            }
        }
        //整形,去除长度小于gap的零的空洞
        if (vdate.size()<=gap)
            return;
        for (int i=0;i<vdate.size()-gap;i++){
            if (vdate[i]>0 && vdate[i+gap]>0){
                for (int j=i;j<i+gap;j++){
                    vdate[j] = 1;
                }
                i = i+gap-1;
            }
        }
        //记录上下沿
        for (int i=1;i<vdate.size();i++){
            if (vdate[i-1] == 0 && vdate[i]>0)
                vup.push_back(i);
            if (vdate[i-1]>0 && vdate[i] == 0)
                vdown.push_back(i);
        }
    }
投影变换。投影分析是非常重要的分析方式。这里的投影分析是从书上扒下来的,能够直接对图像进行投影分析,效果非常好。当然工具具备了,如何灵活使用也是需要经验的。
 





目前方向:图像拼接融合、图像识别 联系方式:jsxyhelu@foxmail.com
目录
相关文章
|
4月前
|
计算机视觉 Python
opencv 处理图像去噪的几种方法学习
OpenCV 提供了多种图像去噪的方法,以下是一些常见的去噪技术以及相应的 Python 代码示例: 均值滤波:使用像素邻域的灰度均值代替该像素的值。
70 0
|
6月前
|
算法 数据可视化 计算机视觉
使用Python实现图像处理中的边缘检测算法
图像处理中的边缘检测是计算机视觉和图像识别领域的重要技术之一。本文将介绍如何利用Python语言实现常见的边缘检测算法,包括Sobel、Canny等,并结合实例演示其在图像处理中的应用。
222 16
|
6月前
|
计算机视觉
opencv滤波技术
opencv滤波技术
70 0
|
资源调度 API 计算机视觉
OpenCV(图像处理)-基于Oython-滤波器(低通、高通滤波器的使用方法)
OpenCV(图像处理)-基于Oython-滤波器(低通、高通滤波器的使用方法)
161 0
|
计算机视觉
模板匹配人眼---OpenCV-Python开发指南(33)
模板匹配人眼---OpenCV-Python开发指南(33)
185 0
模板匹配人眼---OpenCV-Python开发指南(33)
|
前端开发 定位技术 C++
3D激光SLAM:A-LOAM :前端lidar点预处理部分代码解读
A-LOAM的cpp有四个,其中 kittiHelper.cpp 的作用是将kitti数据集转为rosbag 剩下的三个是作为 slam 的 部分,分别是: - laserMappin.cpp ++++ 当前帧到地图的优化 - laserOdometry.cpp ++++ 帧间里程计 - scanRegistration.cpp ++++ 前端lidar点预处理及特征提取 本片主要解读 前端lidar点预处理部分的代码
3D激光SLAM:A-LOAM :前端lidar点预处理部分代码解读
|
人工智能 JavaScript 生物认证
Opencv 图像处理:数字图像的必会知识
Opencv 图像处理:数字图像的必会知识
236 0
Opencv 图像处理:数字图像的必会知识