RANSAC算法在图像拼接上的应用的实现

简介: 关于算法原理请参考《基于SURF特征的图像与视频拼接技术的研究》。一、问题提出        RANSAC的算法原理并不复杂,比较复杂的地方在于“建立模型”和“评价模型”。我们经常看到的是采用“直线”或者“圆”作为基本模型进行“建立”,而采用所有点到该“直线”或“圆”的欧拉距离作为标准来“评价”(当然是越小越好)。
    关于算法原理请参考《基于SURF特征的图像与视频拼接技术的研究》。
一、问题提出
         RANSAC的算法原理并不复杂,比较复杂的地方在于“建立模型”和“评价模型”。我们经常看到的是采用“直线”或者“圆”作为基本模型进行“建立”,而采用所有点到该“直线”或“圆”的欧拉距离作为标准来“评价”(当然是越小越好)。在经典的图像拼接算法中,需要对特征点进行配对。采用的模型简单来说为“根据4对特征点计算出单应矩阵,而后计算图1上所有对应的特征点经过这个‘ 单应矩阵’ 变化后得到的图片和图2上的距离之和“(当然也是越小越好)。
        为了提高识别的效率,前辈对算法进行了不懈的研究和提升,目前看来,用于图像拼接的RANSAC算法应该如下:
     img_a14e6c6bffca4470b70f2659845d8391.png

img_8f02d196ce896d78353e2b860143f575.png
及其改进算法:
img_47d2d8dd92d382e1f50849537bebda75.png
img_1e1b7fdea6bf1407a1425837cadb5d1f.png
二、算法实现
       a)数据准备
某大学图片,很明显的有视场变化
img_90260e7c96f15d7792d06f6c583e4e4a.jpe img_63255a8f3ef52f3f03ecb2b035199100.jpe
       b)算法分析,参考《 基于SURF特征的图像与视频拼接技术的研究和实现一 和 二
       现在思考,RANSAC算法其实是”基于统计的配对算法“,在进入RANSAC算法流程之前,已经计算出来图1和图2上的特征点值了。我们不仅需要根据这些点值去预测模型,而且需要去检测模型。这个模型也不是凭空随便找的,而是以”透视变换“作为基础的(关于透视变化请参考我前面的博文)。
        寻找的方法是首先找到符合某一模型的”内点集“,而后根据这一”内点集“,创建变换模型。
        寻找”内点集“的方法就是直接从现有的数据中找出一部分数据计算出一个模型,而后根据这个模型计算所有点的误差,迭代多次,得到最小误差的情况(和对应的点集),这个时候的模型就是接近正确的模型。
        这个误差的计算方法也是设计出来的(很可能还是统计值)。
        所以RANSAC很像是基于统计的一种计算可行解的模式。很多时候你不是需要从很多的数据中找出一个模型来吗?比如马尔萨斯模型?这个模型可能有函数,还有参数。你猜测的是函数,但是参数就可以通过这种模式来进行计算。
        如果有比较好的评价函数, 最后你还可以比较几种函数的选择。所以RANSAC就是一种单模型下基于离散数据计算模型的方法。(其实也是直观的、基础的、简洁的、有效的)
       这样我想起之前研究过的一种叫做”交叉检验“(cross check /cross validation)的东西。
       定义:在给定的建模样本中,拿出大部分样本进行模型建立,留小部分对建立的模型进行预报,并将这小部分进行误差预报,计算平方加和。(然后当然是选取误差最小的模型和)
       相比较RANSAC和CROSS VALIDATION,有两点不同。一个是模型的建立,RANSAC是选择很少量的数据建立模型(比如圆、线、透视变换),而后大量数据做验证;而CROSS需要较多的数据建立模型(比如MLP,神网),较少的数据进行验证(它也只有较少的数据了)
       c)解析 OPENCV中的实现
       为了实现图像的特征点的匹配,并且最后实现图像拼接,在OPENCV中实现了RANSAC算法及其改进算法
       c.1 调用方法
            //-- Step 3: 匹配
    FlannBasedMatcher matcher;//BFMatcher为强制匹配
    std::vectorDMatch > matches;
    matcher.matchdescriptors_1descriptors_2matches );
    //取最大最小距离
    double max_dist = 0; double min_dist = 100;
    forint i = 0; i < descriptors_1.rowsi++ )
    { 
        double dist = matches[i].distance;
        ifdist < min_dist ) min_dist = dist;
        ifdist > max_dist ) max_dist = dist;
    }
    std::vectorDMatch > good_matches;
    forint i = 0; i < descriptors_1.rowsi++ )
    { 
        ifmatches[i].distance <= 3*min_dist )//这里的阈值选择了3倍的min_dist
        { 
            good_matches.push_backmatches[i]); 
        }
    }
    //画出"good match"
    Mat img_matches;
    drawMatchesimg_1keypoints_1img_2keypoints_2,
        good_matchesimg_matchesScalar::all(-1), Scalar::all(-1),
        vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
    //-- Localize the object from img_1 in img_2
    std::vector<Point2fobj;
    std::vector<Point2fscene;
    forint i = 0; i < (int)good_matches.size(); i++ )
    {    
        obj.push_backkeypoints_1good_matches[i].queryIdx ].pt );
        scene.push_backkeypoints_2good_matches[i].trainIdx ].pt );
    }
    //直接调用ransac,计算单应矩阵
    Mat H = findHomographyobjsceneCV_RANSAC );
       c.2 原理分析
       opencv中已经封装的很好了,注意的是在实际使用中还可以对识别出来的结果做进一步的处理。
       findHomography 的定义
参数分为points1和points2,参数3是method,然后是threshold(一般为3),最后为mask
cv::Mat cv::findHomography( InputArray _points1, InputArray _points2,
                            int method, double ransacReprojThreshold, OutputArray _mask )
{
    const double confidence = 0.995;
    const int maxIters = 2000;
    const double defaultRANSACReprojThreshold = 3;
    bool result = false;

    Mat points1 = _points1.getMat(), points2 = _points2.getMat();
    Mat src, dst, H, tempMask;
    int npoints = -1;

    for( int i = 1; i <= 2; i++ )
    {
        Mat& p = i == 1 ? points1 : points2;
        Mat& m = i == 1 ? src : dst;
        npoints = p.checkVector(2, -1, false);
        if( npoints < 0 )
        {
            npoints = p.checkVector(3, -1, false);
            if( npoints < 0 )
                CV_Error(Error::StsBadArg, "The input arrays should be 2D or 3D point sets");
            if( npoints == 0 )
                return Mat();
            convertPointsFromHomogeneous(p, p);
        }
        p.reshape(2, npoints).convertTo(m, CV_32F);
    }

    CV_Assert( src.checkVector(2) == dst.checkVector(2) );

    if( ransacReprojThreshold <= 0 )
        ransacReprojThreshold = defaultRANSACReprojThreshold;

    Ptr<PointSetRegistrator::Callback> cb = makePtr<HomographyEstimatorCallback>();

    if( method == 0 || npoints == 4 )
    {
        tempMask = Mat::ones(npoints, 1, CV_8U);
        result = cb->runKernel(src, dst, H) > 0;
    }
    else if( method == RANSAC )
        result = createRANSACPointSetRegistrator(cb, 4, ransacReprojThreshold, confidence, maxIters)->run(src, dst, H, tempMask);
    else if( method == LMEDS )
        result = createLMeDSPointSetRegistrator(cb, 4, confidence, maxIters)->run(src, dst, H, tempMask);
    else
        CV_Error(Error::StsBadArg, "Unknown estimation method");

    if( result && npoints > 4 )
    {
        compressPoints( src.ptr<Point2f>(), tempMask.ptr<uchar>(), 1, npoints );
        npoints = compressPoints( dst.ptr<Point2f>(), tempMask.ptr<uchar>(), 1, npoints );
        if( npoints > 0 )
        {
            Mat src1 = src.rowRange(0, npoints);
            Mat dst1 = dst.rowRange(0, npoints);
            src = src1;
            dst = dst1;
            if( method == RANSAC || method == LMEDS )
                cb->runKernel( src, dst, H );
            Mat H8(8, 1, CV_64F, H.ptr<double>());
            createLMSolver(makePtr<HomographyRefineCallback>(src, dst), 10)->run(H8);
        }
    }

    if( result )
    {
        if( _mask.needed() )
            tempMask.copyTo(_mask);
    }
    else
        H.release();

    return H;
}
       和RANSAC相关的是
Ptr<PointSetRegistrator> createRANSACPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb,
                                                         int _modelPoints, double _threshold,
                                                         double _confidence, int _maxIters)
{
    CV_Assert( !RANSACPointSetRegistrator_info_auto.name().empty() );
    return Ptr<PointSetRegistrator>(
        new RANSACPointSetRegistrator(_cb, _modelPoints, _threshold, _confidence, _maxIters));
}
      
  class RANSACPointSetRegistrator : public PointSetRegistrator
{
public:
    RANSACPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb=Ptr<PointSetRegistrator::Callback>(),
                              int _modelPoints=0, double _threshold=0, double _confidence=0.99, int _maxIters=1000)
    : cb(_cb), modelPoints(_modelPoints), threshold(_threshold), confidence(_confidence), maxIters(_maxIters)
    {
        checkPartialSubsets = true;
    }

    int findInliers( const Mat& m1, const Mat& m2, const Mat& model, Mat& err, Mat& mask, double thresh ) const
    {
        cb->computeError( m1, m2, model, err );
        mask.create(err.size(), CV_8U);

        CV_Assert( err.isContinuous() && err.type() == CV_32F && mask.isContinuous() && mask.type() == CV_8U);
        const float* errptr = err.ptr<float>();
        uchar* maskptr = mask.ptr<uchar>();
        float t = (float)(thresh*thresh);
        int i, n = (int)err.total(), nz = 0;
        for( i = 0; i < n; i++ )
        {
            int f = errptr[i] <= t;
            maskptr[i] = (uchar)f;
            nz += f;
        }
        return nz;
    }

    bool getSubset( const Mat& m1, const Mat& m2,
                    Mat& ms1, Mat& ms2, RNG& rng,
                    int maxAttempts=1000 ) const
    {
        cv::AutoBuffer<int> _idx(modelPoints);
        int* idx = _idx;
        int i = 0, j, k, iters = 0;
        int esz1 = (int)m1.elemSize(), esz2 = (int)m2.elemSize();
        int d1 = m1.channels() > 1 ? m1.channels() : m1.cols;
        int d2 = m2.channels() > 1 ? m2.channels() : m2.cols;
        int count = m1.checkVector(d1), count2 = m2.checkVector(d2);
        const int *m1ptr = m1.ptr<int>(), *m2ptr = m2.ptr<int>();

        ms1.create(modelPoints, 1, CV_MAKETYPE(m1.depth(), d1));
        ms2.create(modelPoints, 1, CV_MAKETYPE(m2.depth(), d2));

        int *ms1ptr = ms1.ptr<int>(), *ms2ptr = ms2.ptr<int>();

        CV_Assert( count >= modelPoints && count == count2 );
        CV_Assert( (esz1 % sizeof(int)) == 0 && (esz2 % sizeof(int)) == 0 );
        esz1 /= sizeof(int);
        esz2 /= sizeof(int);

        for(; iters < maxAttempts; iters++)
        {
            for( i = 0; i < modelPoints && iters < maxAttempts; )
            {
                int idx_i = 0;
                for(;;)
                {
                    idx_i = idx[i] = rng.uniform(0, count);
                    for( j = 0; j < i; j++ )
                        if( idx_i == idx[j] )
                            break;
                    if( j == i )
                        break;
                }
                for( k = 0; k < esz1; k++ )
                    ms1ptr[i*esz1 + k] = m1ptr[idx_i*esz1 + k];
                for( k = 0; k < esz2; k++ )
                    ms2ptr[i*esz2 + k] = m2ptr[idx_i*esz2 + k];
                if( checkPartialSubsets && !cb->checkSubset( ms1, ms2, i+1 ))
                {
                    iters++;
                    continue;
                }
                i++;
            }
            if( !checkPartialSubsets && i == modelPoints && !cb->checkSubset(ms1, ms2, i))
                continue;
            break;
        }

        return i == modelPoints && iters < maxAttempts;
    }

    bool run(InputArray _m1, InputArray _m2, OutputArray _model, OutputArray _mask) const
    {
        bool result = false;
        Mat m1 = _m1.getMat(), m2 = _m2.getMat();
        Mat err, mask, model, bestModel, ms1, ms2;

        int iter, niters = MAX(maxIters, 1);
        int d1 = m1.channels() > 1 ? m1.channels() : m1.cols;
        int d2 = m2.channels() > 1 ? m2.channels() : m2.cols;
        int count = m1.checkVector(d1), count2 = m2.checkVector(d2), maxGoodCount = 0;

        RNG rng((uint64)-1);

        CV_Assert( cb );
        CV_Assert( confidence > 0 && confidence < 1 );

        CV_Assert( count >= 0 && count2 == count );
        if( count < modelPoints )
            return false;

        Mat bestMask0, bestMask;

        if( _mask.needed() )
        {
            _mask.create(count, 1, CV_8U, -1, true);
            bestMask0 = bestMask = _mask.getMat();
            CV_Assert( (bestMask.cols == 1 || bestMask.rows == 1) && (int)bestMask.total() == count );
        }
        else
        {
            bestMask.create(count, 1, CV_8U);
            bestMask0 = bestMask;
        }

        if( count == modelPoints )
        {
            if( cb->runKernel(m1, m2, bestModel) <= 0 )
                return false;
            bestModel.copyTo(_model);
            bestMask.setTo(Scalar::all(1));
            return true;
        }

        for( iter = 0; iter < niters; iter++ )
        {
            int i, goodCount, nmodels;
            if( count > modelPoints )
            {
                bool found = getSubset( m1, m2, ms1, ms2, rng );
                if( !found )
                {
                    if( iter == 0 )
                        return false;
                    break;
                }
            }

            nmodels = cb->runKernel( ms1, ms2, model );
            if( nmodels <= 0 )
                continue;
            CV_Assert( model.rows % nmodels == 0 );
            Size modelSize(model.cols, model.rows/nmodels);

            for( i = 0; i < nmodels; i++ )
            {
                Mat model_i = model.rowRange( i*modelSize.height, (i+1)*modelSize.height );
                goodCount = findInliers( m1, m2, model_i, err, mask, threshold );

                if( goodCount > MAX(maxGoodCount, modelPoints-1) )
                {
                    std::swap(mask, bestMask);
                    model_i.copyTo(bestModel);
                    maxGoodCount = goodCount;
                    niters = RANSACUpdateNumIters( confidence, (double)(count - goodCount)/count, modelPoints, niters );
                }
            }
        }

        if( maxGoodCount > 0 )
        {
            if( bestMask.data != bestMask0.data )
            {
                if( bestMask.size() == bestMask0.size() )
                    bestMask.copyTo(bestMask0);
                else
                    transpose(bestMask, bestMask0);
            }
            bestModel.copyTo(_model);
            result = true;
        }
        else
            _model.release();

        return result;
    }

    void setCallback(const Ptr<PointSetRegistrator::Callback>& _cb) { cb = _cb; }

    AlgorithmInfo* info() const;

    Ptr<PointSetRegistrator::Callback> cb;
    int modelPoints;
    bool checkPartialSubsets;
    double threshold;
    double confidence;
    int maxIters;
};
       d)如何复用OPENCV中的实现于数据的统计研究
        opencv中的封装是专门用于特征点的,如果需要使用在其它地方还需要修改。但是我更关心的是RANSAC的算法应该用在哪里?
四、反思小结
       即使是这样一个原理来说比较清楚的算法,如果想从零开始进行实现,还是很不容易的。所以积累算法资源、提高算法实现能力,可能都是很重要的事情。
        和cross validation算法比较, 和lmeds 最小平方中值估计法




目前方向:图像拼接融合、图像识别 联系方式:jsxyhelu@foxmail.com
目录
相关文章
|
11天前
|
存储 监控 算法
员工上网行为监控中的Go语言算法:布隆过滤器的应用
在信息化高速发展的时代,企业上网行为监管至关重要。布隆过滤器作为一种高效、节省空间的概率性数据结构,适用于大规模URL查询与匹配,是实现精准上网行为管理的理想选择。本文探讨了布隆过滤器的原理及其优缺点,并展示了如何使用Go语言实现该算法,以提升企业网络管理效率和安全性。尽管存在误报等局限性,但合理配置下,布隆过滤器为企业提供了经济有效的解决方案。
52 8
员工上网行为监控中的Go语言算法:布隆过滤器的应用
|
3月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
64 3
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的优化算法及其应用
【10月更文挑战第8天】 本文将探讨深度学习中常用的优化算法,包括梯度下降法、Adam和RMSProp等,介绍这些算法的基本原理与应用场景。通过实例分析,帮助读者更好地理解和应用这些优化算法,提高深度学习模型的训练效率与性能。
252 63
|
11天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
46 0
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
52 1
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
65 1
|
2月前
|
缓存 算法 网络协议
OSPF的路由计算算法:原理与应用
OSPF的路由计算算法:原理与应用
65 4
|
2月前
|
机器学习/深度学习 监控 算法
基于反光衣和检测算法的应用探索
本文探讨了利用机器学习和计算机视觉技术进行反光衣检测的方法,涵盖图像预处理、目标检测与分类、特征提取等关键技术。通过YOLOv5等模型的训练与优化,展示了实现高效反光衣识别的完整流程,旨在提升智能检测系统的性能,应用于交通安全、工地监控等领域。
|
2月前
|
存储 算法 网络协议
OSPF的SPF算法介绍:原理、实现与应用
OSPF的SPF算法介绍:原理、实现与应用
94 3

热门文章

最新文章