用 Python 和 OpenCV 检测图片上的条形码(转载)

简介: 原文地址:http://python.jobbole.com/80448/假设我们要检测下图中的条形码:图1:包含条形码的示例图片现在让我们开始写点代码,新建一个文件,命名为detect_barcode.

原文地址:http://python.jobbole.com/80448/

假设我们要检测下图中的条形码:

图1:包含条形码的示例图片

现在让我们开始写点代码,新建一个文件,命名为detect_barcode.py,打开并编码:

我们首先做的是导入所需的软件包,我们将使用NumPy做数值计算,argparse用来解析命令行参数,cv2是OpenCV的绑定。

然后我们设置命令行参数,我们这里需要一个简单的选择,–image是指包含条形码的待检测图像文件的路径。

现在开始真正的图像处理:

12~13行:从磁盘载入图像并转换为灰度图。

17~18行:使用Scharr操作(指定使用ksize = -1)构造灰度图在水平和竖直方向上的梯度幅值表示。

21~22行:Scharr操作之后,我们从x-gradient中减去y-gradient,通过这一步减法操作,最终得到包含高水平梯度和低竖直梯度的图像区域。

上面的gradient表示的原始图像看起来是这样的:

图:2:条形码图像的梯度表示

注意条形码区域是怎样通过梯度操作检测出来的。下一步将通过去噪仅关注条形码区域。

25行:我们要做的第一件事是使用9*9的内核对梯度图进行平均模糊,这将有助于平滑梯度表征的图形中的高频噪声。

26行:然后我们将模糊化后的图形进行二值化,梯度图中任何小于等于255的像素设为0(黑色),其余设为255(白色)。

模糊并二值化后的输出看起来是这个样子:

图3:二值化梯度图以此获得长方形条形码区域的粗略近似

然而,如你所见,在上面的二值化图像中,条形码的竖杠之间存在缝隙,为了消除这些缝隙,并使我们的算法更容易检测到条形码中的“斑点”状区域,我们需要进行一些基本的形态学操作:

29行:我们首先使用cv2.getStructuringElement构造一个长方形内核。这个内核的宽度大于长度,因此我们可以消除条形码中垂直条之间的缝隙。

30行:这里进行形态学操作,将上一步得到的内核应用到我们的二值图中,以此来消除竖杠间的缝隙。

现在,你可以看到这些缝隙相比上面的二值化图像基本已经消除:

图4:使用形态学中的闭运算消除条形码竖条之间的缝隙

当然,现在图像中还有一些小斑点,不属于真正条形码的一部分,但是可能影响我们的轮廓检测。

让我们来消除这些小斑点:

我们这里所做的是首先进行4次腐蚀(erosion),然后进行4次膨胀(dilation)。腐蚀操作将会腐蚀图像中白色像素,以此来消除小斑点,而膨胀操作将使剩余的白色像素扩张并重新增长回去。

如果小斑点在腐蚀操作中被移除,那么在膨胀操作中就不会再出现。

经过我们这一系列的腐蚀和膨胀操作,可以看到我们已经成功地移除小斑点并得到条形码区域。

图5:应用一系列的腐蚀和膨胀来移除不相关的小斑点

最后,让我们找到图像中条形码的轮廓:

38~40行:幸运的是这一部分比较容易,我们简单地找到图像中的最大轮廓,如果我们正确完成了图像处理步骤,这里应该对应于条形码区域。

43~44行:然后我们为最大轮廓确定最小边框

48~50行:最后显示检测到的条形码

正如你在下面的图片中所见,我们已经成功检测到了条形码:

图6:成功检测到示例图像中的条形码

下一部分,我们将尝试更多图像。

成功的条形码检测

要跟随这些结果,请使用文章下面的表单去下载本文的源码以及随带的图片。

一旦有了代码和图像,打开一个终端来执行下面的命令:

图7:使用OpenCV检测图像中的一个条形码

检测椰油瓶子上的条形码没有问题。

让我们试下另外一张图片:

图8:使用计算机视觉检测图像中的一个条形码

我们同样能够在上面的图片中找到条形码。

关于食品的条形码检测已经足够了,书本上的条形码怎么样呢:

图9:使用Python和OpenCV检测书本上的条形码

没问题,再次通过。

那包裹上的跟踪码呢?

图10:使用计算机视觉和图像处理检测包裹上的条形码

我们的算法再次成功检测到条形码。

最后,我们再尝试一张图片,这个是我最爱的意大利面酱—饶氏自制伏特加酱(Rao’s Homemade Vodka Sauce):

图11:使用Python和Opencv很容易检测条形码

我们的算法又一次检测到条形码!

总结

这篇博文中,我们回顾了使用计算机视觉技术检测图像中条形码的必要步骤,使用Python编程语言和OpenCV库实现了我们的算法。

算法概要如下:

  1. 计算x方向和y方向上的Scharr梯度幅值表示
  2. 将x-gradient减去y-gradient来显示条形码区域
  3. 模糊并二值化图像
  4. 对二值化图像应用闭运算内核
  5. 进行系列的腐蚀、膨胀
  6. 找到图像中的最大轮廓,大概便是条形码

需要注意的是,该方法做了关于图像梯度表示的假设,因此只对水平条形码有效。

如果你想实现一个更加鲁棒的条形码检测算法,你需要考虑图像的方向,或者更好的,应用机器学习技术如Haar级联或者HOG + Linear SVM去扫描图像条形码区域。





目前方向:图像拼接融合、图像识别 联系方式:jsxyhelu@foxmail.com
目录
相关文章
|
1月前
|
计算机视觉
Opencv学习笔记(十二):图片腐蚀和膨胀操作
这篇文章介绍了图像腐蚀和膨胀的原理、作用以及使用OpenCV实现这些操作的代码示例,并深入解析了开运算和闭运算的概念及其在图像形态学处理中的应用。
124 1
Opencv学习笔记(十二):图片腐蚀和膨胀操作
|
1月前
|
Python
Python实用记录(六):如何打开txt文档并删除指定绝对路径下图片
这篇文章介绍了如何使用Python打开txt文档,删除文档中指定路径的图片,并提供了一段示例代码来展示这一过程。
30 1
|
1月前
|
计算机视觉
Opencv学习笔记(八):如何通过cv2读取视频和摄像头来进行人脸检测(jetson nano)
如何使用OpenCV库通过cv2模块读取视频和摄像头进行人脸检测,并提供了相应的代码示例。
96 1
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:智能质量检测与控制
使用Python实现深度学习模型:智能质量检测与控制 【10月更文挑战第8天】
180 62
使用Python实现深度学习模型:智能质量检测与控制
|
1月前
|
Python
Socket学习笔记(二):python通过socket实现客户端到服务器端的图片传输
使用Python的socket库实现客户端到服务器端的图片传输,包括客户端和服务器端的代码实现,以及传输结果的展示。
140 3
Socket学习笔记(二):python通过socket实现客户端到服务器端的图片传输
|
1月前
|
机器学习/深度学习 计算机视觉
目标检测笔记(六):如何结合特定区域进行目标检测(基于OpenCV的人脸检测实例)
本文介绍了如何使用OpenCV进行特定区域的目标检测,包括人脸检测实例,展示了两种实现方法和相应的代码。
65 1
目标检测笔记(六):如何结合特定区域进行目标检测(基于OpenCV的人脸检测实例)
|
22天前
|
机器学习/深度学习 PyTorch TensorFlow
使用Python实现智能食品质量检测的深度学习模型
使用Python实现智能食品质量检测的深度学习模型
70 1
|
1月前
|
Serverless 计算机视觉
语义分割笔记(三):通过opencv对mask图片来画分割对象的外接椭圆
这篇文章介绍了如何使用OpenCV库通过mask图像绘制分割对象的外接椭圆。首先,需要加载mask图像,然后使用`cv2.findContours()`寻找轮廓,接着用`cv2.fitEllipse()`拟合外接椭圆,最后用`cv2.ellipse()`绘制椭圆。文章提供了详细的代码示例,展示了从读取图像到显示结果的完整过程。
57 0
语义分割笔记(三):通过opencv对mask图片来画分割对象的外接椭圆
|
1月前
|
计算机视觉 Python
python利用pyqt5和opencv打开电脑摄像头并进行拍照
本项目使用Python的PyQt5和OpenCV库实现了一个简单的摄像头应用。用户可以通过界面按钮打开或关闭摄像头,并实时预览视频流。点击“拍照”按钮可以捕捉当前画面并保存为图片文件。该应用适用于简单的图像采集和处理任务。
109 0
python利用pyqt5和opencv打开电脑摄像头并进行拍照
|
1月前
|
Python
Python实用记录(四):os模块-去后缀或者改后缀/指定目录下图片或者子目录图片写入txt/csv
本文介绍了如何使用Python的os模块来操作文件,包括更改文件后缀、分割文件路径和后缀、将指定目录下的所有图片写入txt文档,以及将指定目录下所有子目录中的图片写入csv文档,并为每个子目录分配一个标签。
21 1
下一篇
无影云桌面