Stanford CS231n实践笔记(课时14卷积神经网络详解 上)

简介: 本课我们主要来研究一个“浏览器中的卷积神经网络”这只是一个展示项目,但是能够帮助直观地看到一些东西地址:https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.
本课我们主要来研究一个“浏览器中的卷积神经网络”
img_0329b2b7f0363fef467f839043e0e038.png
这只是一个展示项目,但是能够帮助直观地看到一些东西
地址:https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

layer_defs = [];
layer_defs.push({type:'input', out_sx:32, out_sy:32, out_depth:3});
layer_defs.push({type:'conv', sx:5, filters:16, stride:1, pad:2, activation:'relu'});
layer_defs.push({type:'pool', sx:2, stride:2});
layer_defs.push({type:'conv', sx:5, filters:20, stride:1, pad:2, activation:'relu'});
layer_defs.push({type:'pool', sx:2, stride:2});
layer_defs.push({type:'conv', sx:5, filters:20, stride:1, pad:2, activation:'relu'});
layer_defs.push({type:'pool', sx:2, stride:2});
layer_defs.push({type:'softmax', num_classes:10});

net = new convnetjs.Net();
net.makeLayers(layer_defs);
网络的构造就是conv-pool-conv-pool这样的过程。
img_33b12946c1f56283f9db41bbf8f0c8db.jpe
原始图片输入
img_b79d1e75e7ea300327e228f4a742dbd4.jpe
第一层卷积
img_489e3fa81365135607b3a56330dc0266.jpe
    和relu
第一层pool
img_54542f7d859653895a9d3ed0b1c7d0a4.jpe
可以返现,图片的大小降低明显
第二次
img_5fb79d3464b75d975de63ed99e337043.png
img_27042471b07c51d31467619c40f3afde.png
第三次
img_9337ceb1f4d949a253fb10f736fc6147.png
img_4aae8037d64c6bdd17631a3de5bf8dda.png
最后,全连接并softmax
img_39e9632526abccca340c91cfb4d44aa3.png
结束了。基本能够理解。
可以预见的一点是,在这样一个发展迅速的时代,拥有数据分析背景、能力,特别是深度学习技术,将使工程师具备价值。要想办法克服显示的瓶颈,成为这样的人。毕竟,真正的牛人是创造规则的。





目前方向:图像拼接融合、图像识别 联系方式:jsxyhelu@foxmail.com
目录
相关文章
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其应用
【9月更文挑战第24天】本文将深入探讨深度学习中的一种重要模型——卷积神经网络(CNN)。我们将通过简单的代码示例,了解CNN的工作原理和应用场景。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息。
36 1
|
11天前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
24 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
2天前
|
安全 网络安全 数据安全/隐私保护
网络安全的守护者:漏洞管理与加密技术的实践之路
【9月更文挑战第33天】在数字时代的浪潮中,网络安全成为了维护信息资产安全的关键防线。本文将深入探讨网络安全中的两个核心要素——漏洞管理和加密技术,揭示它们如何协同工作以保护我们的在线世界。我们将通过实际案例,展示这些技术如何在现实世界中发挥作用,并强调安全意识的重要性。无论你是IT专业人士还是普通网民,这篇文章都将为你提供宝贵的知识和启示。
|
3天前
|
机器学习/深度学习 人工智能 算法
深入理解卷积神经网络:从理论到实践
【9月更文挑战第31天】在深度学习的众多模型之中,卷积神经网络(CNN)以其在图像处理领域的出色表现而闻名。本文将通过浅显易懂的语言和直观的比喻,带领读者了解CNN的核心原理和结构,并通过一个简化的代码示例,展示如何实现一个简单的CNN模型。我们将从CNN的基本组成出发,逐步深入到其在现实世界中的应用,最后探讨其未来的可能性。文章旨在为初学者提供一个清晰的CNN入门指南,同时为有经验的开发者提供一些深入思考的视角。
|
3天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【9月更文挑战第31天】本文旨在通过浅显易懂的语言和直观的比喻,为初学者揭开深度学习中卷积神经网络(CNN)的神秘面纱。我们将从CNN的基本原理出发,逐步深入到其在图像识别领域的实际应用,并通过一个简单的代码示例,展示如何利用CNN进行图像分类。无论你是编程新手还是深度学习的初学者,这篇文章都将为你打开一扇通往人工智能世界的大门。
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)入门与实践
【8月更文挑战第62天】本文以浅显易懂的方式介绍了深度学习领域中的核心技术之一——卷积神经网络(CNN)。文章通过生动的比喻和直观的图示,逐步揭示了CNN的工作原理和应用场景。同时,结合具体的代码示例,引导读者从零开始构建一个简单的CNN模型,实现对图像数据的分类任务。无论你是深度学习的初学者还是希望巩固理解的开发者,这篇文章都将为你打开一扇通往深度学习世界的大门。
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的奥秘:探索神经网络背后的原理与实践
【9月更文挑战第29天】本文将带你深入理解深度学习的核心概念,从基础理论到实际应用,逐步揭示其神秘面纱。我们将探讨神经网络的工作原理,并通过实际代码示例,展示如何构建和训练一个简单的深度学习模型。无论你是初学者还是有一定经验的开发者,这篇文章都将为你提供宝贵的知识和技能。
15 2
|
6天前
|
存储 安全 网络安全
云计算与网络安全:技术融合下的信息安全新挑战
【9月更文挑战第29天】在数字化浪潮的推动下,云计算服务如雨后春笋般涌现,为各行各业提供了前所未有的便利和效率。然而,随着数据和服务的云端化,网络安全问题也日益凸显,成为制约云计算发展的关键因素之一。本文将从技术角度出发,探讨云计算环境下网络安全的重要性,分析云服务中存在的安全风险,并提出相应的防护措施。我们将通过实际案例,揭示如何在享受云计算带来的便捷的同时,确保数据的安全性和完整性。
|
3天前
|
安全 网络协议 网络安全
网络安全与信息安全:漏洞、加密与意识的三重奏
【9月更文挑战第32天】在数字世界的交响乐中,网络安全是那不可或缺的乐章。本文将带您深入探索网络安全的三大主题:网络漏洞的识别与防范、加密技术的奥秘以及安全意识的重要性。通过深入浅出的方式,我们将一起揭开这些概念的神秘面纱,并学习如何在实际生活中应用它们来保护自己的数字足迹。让我们开始这场既刺激又富有教育意义的旅程,提升个人和组织的网络安全防御能力。
|
2天前
|
存储 安全 算法
网络安全与信息安全:漏洞、加密与意识的三维防线
【9月更文挑战第33天】在数字化浪潮中,网络安全与信息安全成为守护数据宝藏的坚固盾牌。本文将深入探讨网络防御的三大支柱:安全漏洞的识别与防范,加密技术的应用和原理,以及提升个人和组织的安全意识。通过这些知识的分享,我们旨在为读者提供一套全面的网络安全策略,确保数字资产的安全无虞。

热门文章

最新文章

下一篇
无影云桌面