'''
同样的数据集和epochs,同样的模型构造。
一个采用序贯、一个采用model方法
对生成结果进行比较
'''
from __future__ import print_function
#!apt-get -qq install -y graphviz && pip install -q pydot
import pydot
import keras
import cv2
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Input
from keras.models import Model
from keras.utils.vis_utils import plot_model
import matplotlib.image as image # image 用于读取图片
import matplotlib.pyplot as plt
import os
batch_size = 32
num_classes = 10
#epochs = 100
epochs = 3
data_augmentation = True
num_predictions = 20
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'keras_cifar10_trained_model.h5'
# The data, split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
#序贯模型
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
#model模型
inputs = Input(shape=(x_train.shape[1:]))
x = Conv2D(32, (3, 3), activation='relu')(inputs)
x = Conv2D(32, (3, 3), activation='relu')(x)
x = MaxPooling2D((2, 2))(x)
x = Dropout(0.25)(x)
x = Conv2D(64, (3, 3), activation='relu')(x)
x = Conv2D(64, (3, 3), activation='relu')(x)
x = MaxPooling2D((2, 2))(x)
x = Dropout(0.25)(x)
x = Flatten()(x)
x = Dense(512)(x)
x = Activation('relu')(x)
x = Dropout(0.5)(x)
x = Dense(num_classes)(x)
x = Activation('softmax')(x)
model2 = Model(inputs=inputs, outputs=x)
#显示模型
model.summary()
plot_model(model,to_file='model_sequence.png',show_shapes=True)
img = image.imread('model_sequence.png')
print(img.shape)
plt.imshow(img) # 显示图片
plt.axis('off') # 不显示坐标轴
plt.show()
model2.summary()
plot_model(model2,to_file='model_model.png',show_shapes=True)
img2 = image.imread('model_model.png')
print(img2.shape)
plt.imshow(img2) # 显示图片
plt.axis('off') # 不显示坐标轴
plt.show()
# initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)
# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
model2.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
if not data_augmentation:
print('Not using data augmentation.')
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
shuffle=True)
else:
print('Using real-time data augmentation.')
# This will do preprocessing and realtime data augmentation:
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images
# Compute quantities required for feature-wise normalization
# (std, mean, and principal components if ZCA whitening is applied).
datagen.fit(x_train)
# Fit the model on the batches generated by datagen.flow().
model.fit_generator(datagen.flow(x_train, y_train,
batch_size=batch_size),
epochs=epochs,
validation_data=(x_test, y_test),
workers=4)
model2.fit_generator(datagen.flow(x_train, y_train,
batch_size=batch_size),
epochs=epochs,
validation_data=(x_test, y_test),
workers=4)
# Save model and weights
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
model_path = os.path.join(save_dir, model_name)
model.save(model_path)
print('Saved trained model at %s ' % model_path)
# Score trained model.
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])