开发者社区> 潇洒坤> 正文
阿里云
为了无法计算的价值
打开APP
阿里云APP内打开

Python数据持久化-小测验

简介: 2018年7月13日考试 1.Python读写csv文件 现有如下图1所示的data.csv文件数据,请使用python读取该csv文件数据,并添加一条记录后输出如图2所示的output.
+关注继续查看

2018年7月13日考试

1.Python读写csv文件

现有如下图1所示的data.csv文件数据,请使用python读取该csv文件数据,并添加一条记录后输出如图2所示的output.csv文件(10分)

img_431aa9dc07a72baab1db665d6e0a15c6.png
题1.png

这一题需要用到的csv文件data.csv下载链接: https://pan.baidu.com/s/1JCUCU4vXBQNwOx2xhAjDqA 密码: pbpx
第1题

import csv 

def printCsv(csvName):
    with open(csvName) as csvFile:
        reader = csv.reader(csvFile)
        for i in reader:
            print(i)

if __name__ == "__main__":
    inCsv = "data.csv"
    outCsv = "output.csv"
    with open(inCsv) as csvFile:
        reader = csv.reader(csvFile)
        data = list(reader)
    print("原csv文件data.csv的数据内容:")
    printCsv(inCsv)
    data.append(['Jack','104'])
    with open(outCsv,'w',\
        newline='') as csvFile:
        writer = csv.writer(csvFile)
        writer.writerows(data)
    print("新产生的csv文件output.csv的数据内容:")
    printCsv(outCsv)

上面一段代码的运行结果如下:

原csv文件data.csv的数据内容:
['name', ' stuNo']
['ZhangSan', ' 101']
['LiSi', ' 102']
['WangWu', ' 103']
新产生的csv文件output.csv的数据内容:
['name', ' stuNo']
['ZhangSan', ' 101']
['LiSi', ' 102']
['WangWu', ' 103']
['Jack', '104']

2.Python读写excel文件

如下所示的Excel表格数据,请编写python代码筛选出Points大于5的数据,并按Points进行排序后输出如图2所示的Excel文件结果

img_731cf796bc4c26743d6f081c16249c7e.png
题2.png

这一题需要用到的excel文件rank.xlsx下载链接: https://pan.baidu.com/s/1reS7yjxUjU1iqZc0rCjljA 密码: uymy

import xlrd
import xlwt

if __name__ == "__main__":
    excel = xlrd.open_workbook("rank.xlsx")
    sheet = excel.sheet_by_index(0)
    #获取字段列表赋值给field_list,第2个字段大于5的数据列表赋值给data_list
    field_list = sheet.row_values(0)
    data_list = []
    for i in range(1,sheet.nrows):
        if int(sheet.row_values(i)[2]) > 5:
            data_list.append(sheet.row_values(i))
    #利用sorted内置函数排序
    data_list = sorted(data_list,key=lambda x:x[2],reverse=True)
    #将获得的信息存入新表,命名为output.xlsx
    excel_w = xlwt.Workbook()
    sheet_w = excel_w.add_sheet("sheet1")
    for i in range(len(field_list)):
        sheet_w.write(0,i,field_list[i])
    for i in range(len(data_list)):
        for j in range(len(data_list[i])):
            sheet_w.write(i+1,j,data_list[i][j])
    excel_w.save("output.xls")

3.mysql数据库的sql语句

(1) 使用sql创建出如下图所示的数据表,数据库名为movies,表名为movieRank,表中包含MovieName、boxOffice、percent、days、totalBoxOffice五个字段,字段的信息如下图所示:


img_1c36e22e476c66ae1b19369bde9a5767.png
题3-1.png

img_3f6ed55b432b9d7a17e2b43bf08a8b67.png
创建语句.png

(2)使用sql语句向movieRank表中添加若干条数据(材料中已提供movieData.txt)

insert into movierank values("21克拉", 1031.92, 15.18, 2, 2827.06);
insert into movierank values("狂暴巨兽", 2928.28, 43.07, 9, 57089.20);
insert into movierank values("起跑线", 161.03, 2.37, 18, 19873.43);
insert into movierank values("头号玩家", 1054.87, 15.52, 23, 127306.41);
insert into movierank values("红海行动", 45.49, 0.67, 65, 364107.74);

插入数据的结果如下图所示:


img_3088ba13f8830b9b42ae4f00e2cdaf52.png
插入结果图示.png

(3)使用sql语句查询movieRank表中的数据并按照totalBoxOffice字段进行排序

select * from movierank order by totalboxoffice;

(4)使用sql语句计算出字段totalBoxOffice字段的总和

select sum(totalboxoffice) from movierank;

4.Python操作mysql数据库

此题接第3题题干,在第三题的基础上完成以下需求:
(1)编写python代码连接mysql数据库,并向movieRank表中新添加两条数据(已提供second.txt)

import pymysql

def getConn(database ="pydb"):
    args = dict(
        host = 'localhost',
        user = 'root',
        passwd = 'Leimysql8',
        charset = 'utf8',
        db = database
    )
    return pymysql.connect(**args)

if __name__ == "__main__":
    conn = getConn("movies")
    cursor = conn.cursor()
    insert_sql = 'insert into movierank values'\
    '("犬之岛", 617.35, 9.08, 2, 1309.09),'\
    '("湮灭", 135.34, 1.99, 9 , 5556.77)'
    cursor.execute(insert_sql)
    conn.commit()
    conn.close()

(2)编写python代码,查询出所有的电影数据,并输出到一个Excel表movieRank.xlsx中,如下图所示


img_e1d5b47cfd2671853fce009d43f3785a.png
题4-2.png
import pymysql
import xlwt

def getConn(database ="pydb"):
    args = dict(
        host = 'localhost',
        user = 'root',
        passwd = 'Leimysql8',
        charset = 'utf8',
        db = database
    )
    return pymysql.connect(**args)

if __name__ == "__main__":
    #从mysql数据库中取出数据赋值给data_list,其数据类型为元组
    conn = getConn("movies")
    cursor = conn.cursor()
    select_sql = "select * from movierank "
    cursor.execute(select_sql)
    data_list = cursor.fetchall()
    field_list = [k[0] for k in cursor.description]
    #把data_list中的数据存入新的excel中,并命名为movieRank.xls
    excel = xlwt.Workbook()
    sheet = excel.add_sheet("sheet1")
    for i in range(len(field_list)):
        sheet.write(0,i,field_list[i])
    for i in range(len(data_list)):
        for j in range(len(data_list[i])):
            sheet.write(i+1,j,data_list[i][j])
    excel.save("movieRank.xls")

5.Python操作MongoDB数据库

(1)编写python代码连接MongoDB数据库,并新建一个building库,在building库下新建一个rooms表

from pymongo import MongoClient

if __name__ == "__main__":
    conn = MongoClient("localhost")
    db = conn.building
    rooms = db.create_collection("rooms")

(2)编写python代码读取rooms.csv文件的中的数据,并将数据插入到rooms表中,添加到rooms表中的数据结构如下图所示

img_8c388ae48604921240da0ce7a2db5055.png
image.png

这一题需要用到的csv文件rooms.csv下载链接: https://pan.baidu.com/s/10fyct-J3a0txtS-EZaaxAQ 密码: je33

from pymongo import MongoClient
import csv

if __name__ == "__main__":
    with open("rooms.csv") as csvFile:
        reader = list(csv.reader(csvFile))
        field_list = reader[0]
        data_list = reader[1:]
    conn = MongoClient("localhost")
    db = conn.building
    rooms = db.rooms
    insert_list = []
    for data in data_list:
        insert_list.append(
            {key:value for key,value in zip(field_list,data)})
    rooms.insert_many(insert_list)

使用csv.DictReader方法

from pymongo import MongoClient
import csv

if __name__ == "__main__":
    conn = MongoClient("localhost")
    db = conn.building
    rooms = db.rooms
    with open("rooms.csv") as csvFile:
        reader = csv.DictReader(csvFile)
        for row in reader:
            rooms.insert_one(dict(row))

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
python数据分析-pandas增删改查
当我们把数据放入DataFrame后,要数据分析就需要对数据进行进行各种操作,最常见的操作就是增删改查,特别是查,查进一步就是探查分析。
13 0
Python数据分析(三)—— Pandas数据统计
Python数据分析(三)—— Pandas数据统计
19 0
python数据分析之pandas超详细学习笔记(下)
简介:pandas,python+data+analysis的组合缩写,是python中基于numpy和matplotlib的第三方数据分析库,与后两者共同构成了python数据分析的基础工具包,享有数分三剑客之名。
53 0
python数据分析之pandas超详细学习笔记(上)
简介:pandas,python+data+analysis的组合缩写,是python中基于numpy和matplotlib的第三方数据分析库,与后两者共同构成了python数据分析的基础工具包,享有数分三剑客之名。
62 0
Python数据分析 | 基于Pandas的数据可视化
本文我们介绍pandas可视化及绘制各种图形的方法,大部分基础图像(条形图、直方图、箱型图、面积图、散点图、饼形图等)绘制只要一行代码就能实现,大大加速了我们的分析效率。
313 0
Python数据分析(二): Pandas技巧 (2)
Pandas的第一部分: http://www.cnblogs.com/cgzl/p/7681974.html github地址: https://github.com/solenovex/My-Machine-Learning-Notebook 很抱歉, 因为工作繁忙, 更新的比较慢.
993 0
Python数据分析(二): Pandas技巧 (1)
第一部分: ipython http://www.cnblogs.com/cgzl/p/7623347.html 第二部分: numpy http://www.cnblogs.com/cgzl/p/7630065.
742 0
python数据分析包pandas的使用方法
pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。
1007 0
+关注
潇洒坤
毕业于厦门大学软件学院软件工程专业,专注于人工智能,喜欢写能够让新手顺畅入门的教程性文章。
文章
问答
文章排行榜
最热
最新
相关电子书
更多
Python 脚本速查手册
立即下载
Python 系列直播——深入Python与日志服务,玩转大规模数据分析处理实战第二讲
立即下载
Python系列直播第一讲——Python中的一切皆对象
立即下载