Hive安装和配置

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: Hive简介(1) hive不支持OLTP处理(2)Hive 1.2 及之后需要java1.7或更新版本Hive安装(1)hive可以安装在任何一个机器上,前提是这个机器必须要有hadoop软件(可以不启动hdfs,yarn等进程),因为Hive需要用到hadoop软件下的一些jar包(2)hive1.

Hive简介

(1) hive不支持OLTP处理

(2)Hive 1.2 及之后需要java1.7或更新版本



Hive安装

(1)hive可以安装在任何一个机器上,前提是这个机器必须要有hadoop软件(可以不启动hdfs,yarn等进程),因为Hive需要用到hadoop软件下的一些jar包

(2)hive1.x默认在哪个目录下启动就会在该目录下创建一个目录metastore_db存放用户产生的元数据,这样很不方便使用,会导致每个用户看到不一样的内容,因此可以使用mysql存放元数据


下载链接:

http://mirror.olnevhost.net/pub/apache/hive/


[root@Darren2 local]# tar -zxvf apache-hive-1.2.2-bin.tar.gz

[root@Darren2 apache-hive-1.2.2-bin]# bin/hive


hive> create database testdb;

hive> show databases;

hive> use testdb;

hive> create table t1(c1 int,c2 string)

    > row format delimited

    > fields terminated by ',';


[root@Darren2 hive]# hdfs dfs -ls -R /user/hive/warehouse/

drwxr-xr-x   - root supergroup          0 2017-11-25 14:25 /user/hive/warehouse/testdb.db

drwxr-xr-x   - root supergroup          0 2017-11-25 14:25 /user/hive/warehouse/testdb.db/t1


[root@Darren2 hive]# cat /tmp/t1.data

1,aaa

2,bbb

3,ccc

hive>select * from t1;

1    aaa

2    bbb

3    ccc

hive> select * from t1 where c2 = 'bbb';

2    bbb


hive> select count(*) from t1 group by c1;

Query ID = root_20171125143038_249cc07f-270b-422c-a165-4da49e05e6c7

Total jobs = 1

Launching Job 1 out of 1

Number of reduce tasks not specified. Estimated from input data size: 1

In order to change the average load for a reducer (in bytes):

  set hive.exec.reducers.bytes.per.reducer=<number>

In order to limit the maximum number of reducers:

  set hive.exec.reducers.max=<number>

In order to set a constant number of reducers:

  set mapreduce.job.reduces=<number>

Starting Job = job_1511577448141_0003, Tracking URL =http://Darren2:8088/proxy/application_1511577448141_0003/

Kill Command = /usr/local/hadoop/bin/hadoop job  -kill job_1511577448141_0003

Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1

2017-11-25 14:30:51,203 Stage-1 map = 0%,  reduce = 0%

2017-11-25 14:31:00,747 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.52 sec

2017-11-25 14:31:09,057 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 2.86 sec

MapReduce Total cumulative CPU time: 2 seconds 860 msec

Ended Job = job_1511577448141_0003

MapReduce Jobs Launched:

Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 2.86 sec   HDFS Read: 6747 HDFS Write: 6 SUCCESS

Total MapReduce CPU Time Spent: 2 seconds 860 msec

OK

1

1

1

Time taken: 31.234 seconds, Fetched: 3 row(s)


也可以通过浏览器访问查看job执行的进度:http://192.168.163.102:8088/


元数据存放在mysql中配置方法

创建对应的hive库,启动hive的时候,会在其下生成很多对应的表


(1)创建连接mysql的配置文件hive-site.xml

[root@Darren2 conf]# vim /usr/local/hive-1.2.2/conf/hive-site.xml

<configuration>

<property>

<name>javax.jdo.option.ConnectionURL</name>

<value>jdbc:mysql://localhos:3306/hive?create=true</value>

</property>

<property>

<name>javax.jdo.option.ConnectionDriverName</name>

<value>com.mysql.jdbc.Driver</value>

</property>

<property>

<name>javax.jdo.option.ConnectionUserName</name>

<value>root</value>

</property>

<property>

<name>javax.jdo.option.ConnectionPassword</name>

<value>147258</value>

</property>

</configyration>


(2)下载java连接mysql的驱动mysql-connector-java-5.1.45.tar.gz

https://dev.mysql.com/downloads/file/?id=474257

解压之后把jar包mysql-connector-java-5.1.45-bin.jar放在hive-1.2.2/lib目录下


(3)在mysql创建hive库

root@localhost [(none)]>create database hive;


(4)测试

[root@Darren2 conf]# cd /usr/local/hive-1.2.2/bin/

[root@Darren2 bin]# ./hive


使用beeline客户端连接hiveserver2的方法

在一个节点上启动hiveserver2服务,可以查看是否监听到10000这个端口来判断是否能启动成功,然后在另外一个节点上使用beeline客户端连接hiveserver2,用户使用root,密码无


#启动hiveserver2

[root@Darren2 bin]# ./hiveserver2


#使用另一个节点连接:

[root@Darren2 bin]# ./beeline

beeline> !connect jdbc:hive2://192.168.163.102:10000

Connecting to jdbc:hive2://192.168.163.102:10000

Enter username for jdbc:hive2://192.168.163.102:10000: root

Enter password for jdbc:hive2://192.168.163.102:10000:

Connected to: Apache Hive (version 1.2.2)

Driver: Hive JDBC (version 1.2.2)

Transaction isolation: TRANSACTION_REPEATABLE_READ

0: jdbc:hive2://192.168.163.102:10000> show databases;

+----------------+--+

| database_name  |

+----------------+--+

| default        |

| testdb1        |

| testdb2        |

+----------------+--+


相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
8月前
|
SQL 数据库 HIVE
记录hive数据库远程访问配置问题
记录hive数据库远程访问配置问题
168 0
|
3月前
|
SQL 存储 分布式计算
Hadoop-16-Hive HiveServer2 HS2 允许客户端远程执行HiveHQL HCatalog 集群规划 实机配置运行
Hadoop-16-Hive HiveServer2 HS2 允许客户端远程执行HiveHQL HCatalog 集群规划 实机配置运行
77 3
|
3月前
|
SQL 分布式计算 Hadoop
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
111 3
|
3月前
|
SQL 存储 数据管理
Hadoop-15-Hive 元数据管理与存储 Metadata 内嵌模式 本地模式 远程模式 集群规划配置 启动服务 3节点云服务器实测
Hadoop-15-Hive 元数据管理与存储 Metadata 内嵌模式 本地模式 远程模式 集群规划配置 启动服务 3节点云服务器实测
79 2
|
8月前
|
SQL HIVE
|
6月前
|
SQL 分布式计算 关系型数据库
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
87 2
|
7月前
|
SQL 分布式计算 关系型数据库
分布式系统详解 -- Hive1.2.1 安装
分布式系统详解 -- Hive1.2.1 安装
88 1
|
8月前
|
SQL 分布式计算 关系型数据库
Ubuntu上安装MySQL以及hive
Ubuntu上安装MySQL以及hive
|
8月前
|
SQL 存储 分布式计算
Hive详解、配置、数据结构、Hive CLI
Hive详解、配置、数据结构、Hive CLI
144 0
Hive详解、配置、数据结构、Hive CLI
|
8月前
|
SQL 分布式计算 资源调度
一文看懂 Hive 优化大全(参数配置、语法优化)
以下是对提供的内容的摘要,总长度为240个字符: 在Hadoop集群中,服务器环境包括3台机器,分别运行不同的服务,如NodeManager、DataNode、NameNode等。集群组件版本包括jdk 1.8、mysql 5.7、hadoop 3.1.3和hive 3.1.2。文章讨论了YARN的配置优化,如`yarn.nodemanager.resource.memory-mb`、`yarn.nodemanager.vmem-check-enabled`和`hive.map.aggr`等参数,以及Map-Side聚合优化、Map Join和Bucket Map Join。
429 0