kafka connect,将数据批量写到hdfs完整过程

简介: 版权声明:本文为博主原创文章,未经博主允许不得转载 本文是基于hadoop 2.7.1,以及kafka 0.11.0.0。kafka-connect是以单节点模式运行,即standalone。   一. 首先,先对kafka和kafka connect做一个简单的介绍   kafka:Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。

版权声明:本文为博主原创文章,未经博主允许不得转载

本文是基于hadoop 2.7.1,以及kafka 0.11.0.0。kafka-connect是以单节点模式运行,即standalone。

 

一. 首先,先对kafka和kafka connect做一个简单的介绍

  kafka:Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。比较直观的解释就是其有一个生产者(producer)和一个消费者(consumer)。可以将kafka想象成一个数据容器,生产者负责发送数据到这个容器中,而消费者从容器中取出数据,在将数据做处理,如存储到hdfs。

  kafka connect:Kafka Connect是一种用于在Kafka和其他系统之间可扩展的、可靠的流式传输数据的工具。它使得能够快速定义将大量数据集合移入和移出Kafka的连接器变得简单。即适合批量数据导入导出操作。

 

 

二. 下面将介绍如何用kafka connect将数据写入到hdfs中。包括在这个过程中可能碰到的一些问题说明。

首先启动kafka-connect:

 
bin/connect-standalone.sh config/connect-standalone.properties config/connector1.properties
这个命令后面两个参数,
  第一个是指定启动的模式,有分布式和单节点两种,这里是单节点。kafka自带,放于config目录下。
  第二个参数指向描述connector的属性的文件,可以有多个,这里只有一个connector用来写入到hdfs。需要自己创建。

接下来看看connector1.properties的内容,
name="test"    #该connector的名字
#
将自己按connect接口规范编写的代码打包后放在kafka/libs目录下,再根据项目结构引用对应connector

connector.class=hdfs.HdfsSinkConnector
#Task是导入导出的具体实现,这里是指定多少个task来并行运行导入导出作业,由多线程实现。由于hdfs中一个文件每次只能又一个文件操作,所以这里只能是1
tasks.max=1 
#指定从哪个topic读取数据,这些其实是用来在connector或者task的代码中读取的。
topics=test
#指定key以那种方式转换,需和Producer发送方指定的序列化方式一致
key.converter=org.apache.kafka.connect.converters.ByteArrayConverter

value.converter=org.apache.kafka.connect.json.JsonConverter #同上
hdfs.url=hdfs://127.0.0.1:9000  #hdfs的url路径,在Connector中会被读取
hdfs.path=/test/file  #hdfs文件路径,同样Connector中被读取

key.converter.schemas.enable=true  #稍后介绍,可以true也可以false,影响传输格式
value.converter.schemas.enable=true  #稍后介绍,可以true也可以false


三. 接下来看代码,connect主要是导入导出两个概念,导入是source,导出时Sink。这里只使用Sink,不过Source和Sink的实现其实基本相同。
实现Sink其实不难,实现对应的接口,即
SinkConnector和SinkTask两个接口,再打包放到kafka/libs目录下即可。其中SinkConnector只有一个,而Task可以有多
先是Connector
public class HdfsSinkConnector extends SinkConnector {
    //这两项为配置hdfs的urlh和路径的配置项,需要在connector1.properties中指定
    public static final String HDFS_URL = "hdfs.url";
    public static final String HDFS_PATH = "hdfs.path";
    private static final ConfigDef CONFIG_DEF = new ConfigDef()
            .define(HDFS_URL, ConfigDef.Type.STRING, ConfigDef.Importance.HIGH, "hdfs url")
            .define(HDFS_PATH, ConfigDef.Type.STRING, ConfigDef.Importance.HIGH, "hdfs path");
    private String hdfsUrl;
    private String hdfsPath;
    @Override
    public String version() {
        return AppInfoParser.getVersion();
    }
//start方法会再初始的时候执行一次,这里主要用于配置 @Override
public void start(Map<String, String> props) { hdfsUrl = props.get(HDFS_URL); hdfsPath = props.get(HDFS_PATH); }   //这里指定了Task的类 @Override public Class<? extends Task> taskClass() { return HdfsSinkTask.class; }   //用于配置Task的config,这些都是会在Task中用到 @Override public List<Map<String, String>> taskConfigs(int maxTasks) { ArrayList<Map<String, String>> configs = new ArrayList<>(); for (int i = 0; i < maxTasks; i++) { Map<String, String> config = new HashMap<>(); if (hdfsUrl != null) config.put(HDFS_URL, hdfsUrl); if (hdfsPath != null) config.put(HDFS_PATH, hdfsPath); configs.add(config); } return configs; }   //关闭时的操作,一般是关闭资源。 @Override public void stop() { // Nothing to do since FileStreamSinkConnector has no background monitoring. } @Override public ConfigDef config() { return CONFIG_DEF; } }
 

接下来是Task

public class HdfsSinkTask extends SinkTask {
    private static final Logger log = LoggerFactory.getLogger(HdfsSinkTask.class);

    private String filename;

    public static String hdfsUrl;
    public static String hdfsPath;
    private Configuration conf;
    private FSDataOutputStream os;
    private FileSystem hdfs;


    public HdfsSinkTask(){

    }

    @Override
    public String version() {
        return new HdfsSinkConnector().version();
    }
  //Task开始会执行的代码,可能有多个Task,所以每个Task都会执行一次
    @Override
    public void start(Map<String, String> props) {
        hdfsUrl = props.get(HdfsSinkConnector.HDFS_URL);
        hdfsPath = props.get(HdfsSinkConnector.HDFS_PATH);
        System.out.println("----------------------------------- start--------------------------------");

        conf = new Configuration();
        conf.set("fs.defaultFS", hdfsUrl);
        //这两个是与hdfs append相关的设置
        conf.setBoolean("dfs.support.append", true);
        conf.set("dfs.client.block.write.replace-datanode-on-failure.policy", "NEVER");
        try{
            hdfs = FileSystem.get(conf);
//            connector.hdfs = new Path(HDFSPATH).getFileSystem(conf);
            os = hdfs.append(new Path(hdfsPath));
        }catch (IOException e){
            System.out.println(e.toString());
        }

    }
  //核心操作,put就是将数据从kafka中取出,存放到其他地方去
    @Override
    public void put(Collection<SinkRecord> sinkRecords) {
        for (SinkRecord record : sinkRecords) {
            log.trace("Writing line to {}: {}", logFilename(), record.value());
            try{
                System.out.println("write info------------------------" + record.value().toString() + "-----------------");
                os.write((record.value().toString()).getBytes("UTF-8"));
                os.hsync();
            }catch(Exception e){
                System.out.print(e.toString());
            }
        }
    }

    @Override
    public void flush(Map<TopicPartition, OffsetAndMetadata> offsets) {
        try{
            os.hsync();
        }catch (Exception e){
            System.out.print(e.toString());
        }

    }
//同样是结束时候所执行的代码,这里用于关闭hdfs资源 @Override
public void stop() { try { os.close(); }catch(IOException e){ System.out.println(e.toString()); } } private String logFilename() { return filename == null ? "stdout" : filename; } }

这里重点提一下,因为在connector1.propertise中设置了key.converter=org.apache.kafka.connect.converters.ByteArrayConverter,所以不能用命令行形式的
producer发送数据,而是要用程序的方式,并且在producer总也要设置key的序列化形式为org.apache.kafka.common.serialization.ByteArraySerializer
编码完成,先用idea以开发程序与依赖包分离的形式打包成jar包,然后将程序对应的jar包(一般就是“项目名.jar”)放到kafka/libs目录下面,这样就能被找到。


四. 接下来对这个过程的问题做一个汇总。
1.在connector1.properties中的key.converter.schemas.enable=false和value.converter.schemas.enable=false的问题。
这个选项默认在connect-standalone.properties中是true的,这个时候发送给topic的Json格式是需要使用avro格式,具体情况可以百度,这里给出一个样例。
{
    "schema": {
        "type": "struct",
        "fields": [{
            "type": "int32",
            "optional": true,
            "field": "c1"
        }, {
            "type": "string",
            "optional": true,
            "field": "c2"
        }, {
            "type": "int64",
            "optional": false,
            "name": "org.apache.kafka.connect.data.Timestamp",
            "version": 1,
            "field": "create_ts"
        }, {
            "type": "int64",
            "optional": false,
            "name": "org.apache.kafka.connect.data.Timestamp",
            "version": 1,
            "field": "update_ts"
        }],
        "optional": false,
        "name": "foobar"
    },
    "payload": {
        "c1": 10000,
        "c2": "bar",
        "create_ts": 1501834166000,
        "update_ts": 1501834166000
    }
}  
 

主要就是schema和payload这两个,不按照这个格式会报错如下

 
org.apache.kafka.connect.errors.DataException: JsonConverter with schemas.enable requires "schema" and "payload" fields and may not contain additional fields. If you are trying to deserialize plain JSON data, set schemas.enable=false in your converter configuration.

   at org.apache.kafka.connect.json.JsonConverter.toConnectData(JsonConverter.java:308)
 

如果想发送普通的json格式而不是avro格式的话,很简单key.converter.schemas.enable和value.converter.schemas.enable设置为false就行。这样就能发送普通的json格式数据。

2.在启动的过程中出现各种各样的java.lang.ClassNotFoundException。

在启动connector的时候,一开始总是会报各个各样的ClassNotFoundException,不是这个包就是那个包,查找问题一直说要么缺少包要么是包冲突。这个是什么原因呢?

其实归根结底还是依赖冲突的问题,因为kafka程序自定义的类加载器加载类的目录是在kafka/libs中,而写到hdfs需要hadoop的包。

我一开始的做法是将hadoop下的包路径添加到CLASSPATH中,这样子问题就来了,因为kafka和hadoop的依赖包是有冲突的,比如hadoop是guava-11.0.2.jar,而kafka是guava-20.0.jar,两个jar包版本不同,而我们是在kafka程序中调用hdfs,所以当jar包冲突时应该优先调用kafka的。但是注意kafka用的是程序自定义的类加载器,其优先级是低于CLASSPATH路径下的类的,就是说加载类时会优先加载CLASSPATH下的类。这样子就有问题了。

我的解决方案时将kafka和hadoop加载的jar包路径都添加到CLASSPATH中,并且kafka的路径写在hadoop前面,这样就可以启动connector成功。

 
 

 
 


相关文章
|
1月前
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
|
1月前
|
SQL 分布式计算 Hadoop
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
40 4
|
1月前
|
SQL
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(二)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(二)
35 2
|
1月前
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
47 1
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
85 0
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
37 0
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
46 0
|
3月前
|
vr&ar 图形学 开发者
步入未来科技前沿:全方位解读Unity在VR/AR开发中的应用技巧,带你轻松打造震撼人心的沉浸式虚拟现实与增强现实体验——附详细示例代码与实战指南
【8月更文挑战第31天】虚拟现实(VR)和增强现实(AR)技术正深刻改变生活,从教育、娱乐到医疗、工业,应用广泛。Unity作为强大的游戏开发引擎,适用于构建高质量的VR/AR应用,支持Oculus Rift、HTC Vive、Microsoft HoloLens、ARKit和ARCore等平台。本文将介绍如何使用Unity创建沉浸式虚拟体验,包括设置项目、添加相机、处理用户输入等,并通过具体示例代码展示实现过程。无论是完全沉浸式的VR体验,还是将数字内容叠加到现实世界的AR应用,Unity均提供了所需的一切工具。
135 0
|
3月前
|
消息中间件 存储 关系型数据库
实时计算 Flink版产品使用问题之如何使用Kafka Connector将数据写入到Kafka
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
3月前
|
消息中间件 监控 Kafka
实时计算 Flink版产品使用问题之处理Kafka数据顺序时,怎么确保事件的顺序性
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。