ajax请求正常,返回json格式,后台没问题,浏览器500

简介: 1.使用的是springmvc中的 @ResponseBody 注解   ,后台不报错,。正常走完;以为使用这个注解就可以正常返回json格式的数据;所以一直没有怀疑是注解的问题;   以为是ajax本身的问题  ;后来将返回数据改为纯数字又没有问题了。

1.使用的是springmvc中的 @ResponseBody 注解   ,后台不报错,。正常走完;以为使用这个注解就可以正常返回json格式的数据;所以一直没有怀疑是注解的问题;

  以为是ajax本身的问题  ;后来将返回数据改为纯数字又没有问题了。但是纯数字满足不了业务需求;只要换成其他类型数据;浏览器就报错500.

  后来将数据先用 谷歌的工具类  Gson  将数据先转为json格式,再用  @ResponseBody  注解 返回 。然后正常   。

目录
相关文章
|
6月前
|
JSON 前端开发 搜索推荐
关于商品详情 API 接口 JSON 格式返回数据解析的示例
本文介绍商品详情API接口返回的JSON数据解析。最外层为`product`对象,包含商品基本信息(如id、name、price)、分类信息(category)、图片(images)、属性(attributes)、用户评价(reviews)、库存(stock)和卖家信息(seller)。每个字段详细描述了商品的不同方面,帮助开发者准确提取和展示数据。具体结构和字段含义需结合实际业务需求和API文档理解。
|
7月前
|
JSON 人工智能 算法
探索大型语言模型LLM推理全阶段的JSON格式输出限制方法
本篇文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。
|
7月前
|
JSON 前端开发 JavaScript
Python中如何判断是否为AJAX请求
AJAX请求是Web开发中常见的异步数据交互方式,允许不重新加载页面即与服务器通信。在Python的Django和Flask框架中,判断AJAX请求可通过检查请求头中的`X-Requested-With`字段实现。Django提供`request.is_ajax()`方法,Flask则需手动检查该头部。本文详解这两种框架的实现方法,并附带代码示例,涵盖安全性、兼容性、调试及前端配合等内容,帮助开发者提升Web应用性能与用户体验。
107 0
|
8月前
|
JSON JavaScript Java
对比JSON和Hessian2的序列化格式
通过以上对比分析,希望能够帮助开发者在不同场景下选择最适合的序列化格式,提高系统的整体性能和可维护性。
258 3
|
8月前
|
JSON API 数据安全/隐私保护
拍立淘按图搜索API接口返回数据的JSON格式示例
拍立淘按图搜索API接口允许用户通过上传图片来搜索相似的商品,该接口返回的通常是一个JSON格式的响应,其中包含了与上传图片相似的商品信息。以下是一个基于淘宝平台的拍立淘按图搜索API接口返回数据的JSON格式示例,同时提供对其关键字段的解释
|
8月前
|
JavaScript 前端开发 数据处理
模板字符串和普通字符串在浏览器和 Node.js 中的性能表现是否一致?
综上所述,模板字符串和普通字符串在浏览器和 Node.js 中的性能表现既有相似之处,也有不同之处。在实际应用中,需要根据具体的场景和性能需求来选择使用哪种字符串处理方式,以达到最佳的性能和开发效率。
170 63
|
8月前
|
算法 开发者
Moment.js库是如何处理不同浏览器的时间戳格式差异的?
总的来说,Moment.js 通过一系列的技术手段和策略,有效地处理了不同浏览器的时间戳格式差异,为开发者提供了一个稳定、可靠且易于使用的时间处理工具。
224 57
|
8月前
|
JSON 移动开发 JavaScript
在浏览器执行js脚本的两种方式
【10月更文挑战第20天】本文介绍了在浏览器中执行HTTP请求的两种方式:`fetch`和`XMLHttpRequest`。`fetch`支持GET和POST请求,返回Promise对象,可以方便地处理异步操作。`XMLHttpRequest`则通过回调函数处理请求结果,适用于需要兼容旧浏览器的场景。文中还提供了具体的代码示例。
129 5
在浏览器执行js脚本的两种方式
|
8月前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
1162 1
|
9月前
|
机器学习/深度学习 自然语言处理 前端开发
前端大模型入门:Transformer.js 和 Xenova-引领浏览器端的机器学习变革
除了调用API接口使用Transformer技术,你是否想过在浏览器中运行大模型?Xenova团队推出的Transformer.js,基于JavaScript,让开发者能在浏览器中本地加载和执行预训练模型,无需依赖服务器。该库利用WebAssembly和WebGPU技术,大幅提升性能,尤其适合隐私保护、离线应用和低延迟交互场景。无论是NLP任务还是实时文本生成,Transformer.js都提供了强大支持,成为构建浏览器AI应用的核心工具。
1609 1