【python进阶】深入理解系统进程2

简介: 前言 在上一篇【python进阶】深入理解系统进程1中,我们讲述了多任务的一些概念,多进程的创建,fork等一些问题,这一节我们继续接着讲述系统进程的一些方法及注意点 multiprocessing 如果你打算编写多进程的服务程序,Unix/Linux⽆疑是正确的选择。

前言

在上一篇【python进阶】深入理解系统进程1中,我们讲述了多任务的一些概念,多进程的创建,fork等一些问题,这一节我们继续接着讲述系统进程的一些方法及注意点

multiprocessing

如果你打算编写多进程的服务程序,Unix/Linux⽆疑是正确的选择。由于 Windows没有fork调⽤,难道在Windows上⽆法⽤Python编写多进程的程 序?
由于Python是跨平台的,⾃然也应该提供⼀个跨平台的多进程⽀持。 multiprocessing模块就是跨平台版本的多进程模块。
multiprocessing模块提供了⼀个Process类来代表⼀个进程对象,下⾯的例⼦ 演示了启动⼀个⼦进程并等待其结束:

from multiprocessing import Process
import os

# 子进程要执行的代码
def run_proc(name):
    print('子进程运行中,name= %s ,pid=%d...' % (name, os.getpid()))

if __name__=='__main__':
    print('父进程 %d.' % os.getpid())
    p = Process(target=run_proc, args=('test',))
    print('子进程将要执行')
    p.start()
    p.join()
    print('子进程已结束')

运行结果:

说明

  • 创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,用start()方法启动,这样创建进程比fork()还要简单。
  • join()方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步。

Process语法结构如下:

Process([group [, target [, name [, args [, kwargs]]]]])

  • target:表示这个进程实例所调用对象;

  • args:表示调用对象的位置参数元组;

  • kwargs:表示调用对象的关键字参数字典;

  • name:为当前进程实例的别名;

  • group:大多数情况下用不到;

Process类常用方法:

  • is_alive():判断进程实例是否还在执行;

  • join([timeout]):是否等待进程实例执行结束,或等待多少秒;

  • start():启动进程实例(创建子进程);

  • run():如果没有给定target参数,对这个对象调用start()方法时,就将执行对象中的run()方法;

  • terminate():不管任务是否完成,立即终止;

Process类常用属性:

  • name:当前进程实例别名,默认为Process-N,N为从1开始递增的整数;

  • pid:当前进程实例的PID值;

实例1

from multiprocessing import Process
import os
from time import sleep

# 子进程要执行的代码
def run_proc(name, age, **kwargs):
    for i in range(10):
        print('子进程运行中,name= %s,age=%d ,pid=%d...' % (name, age,os.getpid()))
        print(kwargs)
        sleep(0.5)

if __name__=='__main__':
    print('父进程 %d.' % os.getpid())
    p = Process(target=run_proc, args=('test',18), kwargs={"m":20})
    print('子进程将要执行')
    p.start()
    sleep(1)
    p.terminate()
    p.join()
    print('子进程已结束')

运行结果:

实例2

from multiprocessing import Process
import time
import os

#两个子进程将会调用的两个方法
def  worker_1(interval):
    print("worker_1,父进程(%s),当前进程(%s)"%(os.getppid(),os.getpid()))
    t_start = time.time()
    time.sleep(interval) #程序将会被挂起interval秒
    t_end = time.time()
    print("worker_1,执行时间为'%0.2f'秒"%(t_end - t_start))

def  worker_2(interval):
    print("worker_2,父进程(%s),当前进程(%s)"%(os.getppid(),os.getpid()))
    t_start = time.time()
    time.sleep(interval)
    t_end = time.time()
    print("worker_2,执行时间为'%0.2f'秒"%(t_end - t_start))

#输出当前程序的ID
print("进程ID:%s"%os.getpid())

#创建两个进程对象,target指向这个进程对象要执行的对象名称,
#args后面的元组中,是要传递给worker_1方法的参数,
#因为worker_1方法就一个interval参数,这里传递一个整数2给它,
#如果不指定name参数,默认的进程对象名称为Process-N,N为一个递增的整数
p1=Process(target=worker_1,args=(2,))
p2=Process(target=worker_2,name="dongGe",args=(1,))

#使用"进程对象名称.start()"来创建并执行一个子进程,
#这两个进程对象在start后,就会分别去执行worker_1和worker_2方法中的内容
p1.start()
p2.start()

#同时父进程仍然往下执行,如果p2进程还在执行,将会返回True
print("p2.is_alive=%s"%p2.is_alive())

#输出p1和p2进程的别名和pid
print("p1.name=%s"%p1.name)
print("p1.pid=%s"%p1.pid)
print("p2.name=%s"%p2.name)
print("p2.pid=%s"%p2.pid)

#join括号中不携带参数,表示父进程在这个位置要等待p1进程执行完成后,
#再继续执行下面的语句,一般用于进程间的数据同步,如果不写这一句,
#下面的is_alive判断将会是True,在shell(cmd)里面调用这个程序时
#可以完整的看到这个过程,大家可以尝试着将下面的这条语句改成p1.join(1),
#因为p2需要2秒以上才可能执行完成,父进程等待1秒很可能不能让p1完全执行完成,
#所以下面的print会输出True,即p1仍然在执行
p1.join()
print("p1.is_alive=%s"%p1.is_alive())

执行结果:

进程的创建-Process子类

创建新的进程还能够使用类的方式,可以自定义一个类,继承Process类,每次实例化这个类的时候,就等同于实例化一个进程对象,请看下面的实例:

from multiprocessing import Process
import time
import os

#继承Process类
class Process_Class(Process):
    #因为Process类本身也有__init__方法,这个子类相当于重写了这个方法,
    #但这样就会带来一个问题,我们并没有完全的初始化一个Process类,所以就不能使用从这个类继承的一些方法和属性,
    #最好的方法就是将继承类本身传递给Process.__init__方法,完成这些初始化操作
    def __init__(self,interval):
        Process.__init__(self)
        self.interval = interval

    #重写了Process类的run()方法
    def run(self):
        print("子进程(%s) 开始执行,父进程为(%s)"%(os.getpid(),os.getppid()))
        t_start = time.time()
        time.sleep(self.interval)
        t_stop = time.time()
        print("(%s)执行结束,耗时%0.2f秒"%(os.getpid(),t_stop-t_start))

if __name__=="__main__":
    t_start = time.time()
    print("当前程序进程(%s)"%os.getpid())        
    p1 = Process_Class(2)
    #对一个不包含target属性的Process类执行start()方法,就会运行这个类中的run()方法,所以这里会执行p1.run()
    p1.start()
    p1.join()
    t_stop = time.time()
    print("(%s)执行结束,耗时%0.2f"%(os.getpid(),t_stop-t_start))

执行结果:

进程池Pool

当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。

初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来执行,请看下面的实例:

from multiprocessing import Pool
import os,time,random

def worker(msg):
    t_start = time.time()
    print("%s开始执行,进程号为%d"%(msg,os.getpid()))
    #random.random()随机生成0~1之间的浮点数
    time.sleep(random.random()*2) 
    t_stop = time.time()
    print(msg,"执行完毕,耗时%0.2f"%(t_stop-t_start))

po=Pool(3) #定义一个进程池,最大进程数3
for i in range(0,10):
    #Pool.apply_async(要调用的目标,(传递给目标的参数元祖,))
    #每次循环将会用空闲出来的子进程去调用目标
    po.apply_async(worker,(i,))

print("----start----")
po.close() #关闭进程池,关闭后po不再接收新的请求
po.join() #等待po中所有子进程执行完成,必须放在close语句之后
print("-----end-----")

运行结果:

multiprocessing.Pool常用函数解析:

  • apply_async(func[, args[, kwds]]) :使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表;

  • apply(func[, args[, kwds]]):使用阻塞方式调用func

  • close():关闭Pool,使其不再接受新的任务;

  • terminate():不管任务是否完成,立即终止;

  • join():主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用;

apply堵塞式

from multiprocessing import Pool
import os,time,random

def worker(msg):
    t_start = time.time()
    print("%s开始执行,进程号为%d"%(msg,os.getpid()))
    #random.random()随机生成0~1之间的浮点数
    time.sleep(random.random()*2) 
    t_stop = time.time()
    print(msg,"执行完毕,耗时%0.2f"%(t_stop-t_start))

po=Pool(3) #定义一个进程池,最大进程数3
for i in range(0,10):
    po.apply(worker,(i,))

print("----start----")
po.close() #关闭进程池,关闭后po不再接收新的请求
po.join() #等待po中所有子进程执行完成,必须放在close语句之后
print("-----end-----")

运行结果:

进程间通信-Queue

Process之间有时需要通信,操作系统提供了很多机制来实现进程间的通信。

1. Queue的使用

可以使用multiprocessing模块的Queue实现多进程之间的数据传递,Queue本身是一个消息列队程序,首先用一个小实例来演示一下Queue的工作原理:

from multiprocessing import Queue
q=Queue(3) #初始化一个Queue对象,最多可接收三条put消息
q.put("消息1") 
q.put("消息2")
print(q.full())  #False
q.put("消息3")
print(q.full()) #True

#因为消息列队已满下面的try都会抛出异常,第一个try会等待2秒后再抛出异常,第二个Try会立刻抛出异常
try:
    q.put("消息4",True,2)
except:
    print("消息列队已满,现有消息数量:%s"%q.qsize())

try:
    q.put_nowait("消息4")
except:
    print("消息列队已满,现有消息数量:%s"%q.qsize())

#推荐的方式,先判断消息列队是否已满,再写入
if not q.full():
    q.put_nowait("消息4")

#读取消息时,先判断消息列队是否为空,再读取
if not q.empty():
    for i in range(q.qsize()):
        print(q.get_nowait())

运行结果:

说明

初始化Queue()对象时(例如:q=Queue()),若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头);

  • Queue.qsize():返回当前队列包含的消息数量;

  • Queue.empty():如果队列为空,返回True,反之False ;

  • Queue.full():如果队列满了,返回True,反之False;

  • Queue.get([block[, timeout]]):获取队列中的一条消息,然后将其从列队中移除,block默认值为True;

1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为止,如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出"Queue.Empty"异常;

2)如果block值为False,消息列队如果为空,则会立刻抛出"Queue.Empty"异常;

  • Queue.get_nowait():相当Queue.get(False);

  • Queue.put(item,[block[, timeout]]):将item消息写入队列,block默认值为True;

1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息列队腾出空间为止,如果设置了timeout,则会等待timeout秒,若还没空间,则抛出"Queue.Full"异常;

2)如果block值为False,消息列队如果没有空间可写入,则会立刻抛出"Queue.Full"异常;

  • Queue.put_nowait(item):相当Queue.put(item, False);

2. Queue实例

我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:

from multiprocessing import Process, Queue
import os, time, random

# 写数据进程执行的代码:
def write(q):
    for value in ['A', 'B', 'C']:
        print('Put %s to queue...' % value)
        q.put(value)
        time.sleep(random.random())

# 读数据进程执行的代码:
def read(q):
    while True:
        if not q.empty():
            value = q.get(True)
            print('Get %s from queue.' % value)
            time.sleep(random.random())
        else:
            break

if __name__=='__main__':
    # 父进程创建Queue,并传给各个子进程:
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))
    # 启动子进程pw,写入:
    pw.start()    
    # 等待pw结束:
    pw.join()
    # 启动子进程pr,读取:
    pr.start()
    pr.join()
    # pr进程里是死循环,无法等待其结束,只能强行终止:
    print('')
    print('所有数据都写入并且读完')

运行结果:

3. 进程池中的Queue

如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:

RuntimeError: Queue objects should only be shared between processes through inheritance.

下面的实例演示了进程池中的进程如何通信:

#修改import中的Queue为Manager
from multiprocessing import Manager,Pool
import os,time,random

def reader(q):
    print("reader启动(%s),父进程为(%s)"%(os.getpid(),os.getppid()))
    for i in range(q.qsize()):
        print("reader从Queue获取到消息:%s"%q.get(True))

def writer(q):
    print("writer启动(%s),父进程为(%s)"%(os.getpid(),os.getppid()))
    for i in "dongGe":
        q.put(i)

if __name__=="__main__":
    print("(%s) start"%os.getpid())
    q=Manager().Queue() #使用Manager中的Queue来初始化
    po=Pool()
    #使用阻塞模式创建进程,这样就不需要在reader中使用死循环了,可以让writer完全执行完成后,再用reader去读取
    po.apply(writer,(q,))
    po.apply(reader,(q,))
    po.close()
    po.join()
    print("(%s) End"%os.getpid())

运行结果:

 

您可以考虑给博主来个小小的打赏以资鼓励,您的肯定将是我最大的动力。thx.

微信打赏

微信账号 nzf6698

支付宝打赏

支付宝账号 18979406698


作  者: Angel_Kitty
出  处:http://www.cnblogs.com/ECJTUACM-873284962/
关于作者:潜心机器学习以及信息安全的综合研究。如有问题或建议,请多多赐教!
版权声明:本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文链接。
特此声明:所有评论和私信都会在第一时间回复。也欢迎园子的大大们指正错误,共同进步。或者直接私信
声援博主:如果您觉得文章对您有帮助,可以点击右下角推荐推荐一下该博文。您的鼓励是作者坚持原创和持续写作的最大动力!

目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
130 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
350 55
|
1月前
|
安全 前端开发 数据库
Python 语言结合 Flask 框架来实现一个基础的代购商品管理、用户下单等功能的简易系统
这是一个使用 Python 和 Flask 框架实现的简易代购系统示例,涵盖商品管理、用户注册登录、订单创建及查看等功能。通过 SQLAlchemy 进行数据库操作,支持添加商品、展示详情、库存管理等。用户可注册登录并下单,系统会检查库存并记录订单。此代码仅为参考,实际应用需进一步完善,如增强安全性、集成支付接口、优化界面等。
|
5天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
42 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
2月前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
132 66
|
1月前
|
监控 搜索推荐 开发工具
2025年1月9日更新Windows操作系统个人使用-禁用掉一下一些不必要的服务-关闭占用资源的进程-禁用服务提升系统运行速度-让电脑不再卡顿-优雅草央千澈-长期更新
2025年1月9日更新Windows操作系统个人使用-禁用掉一下一些不必要的服务-关闭占用资源的进程-禁用服务提升系统运行速度-让电脑不再卡顿-优雅草央千澈-长期更新
128 2
2025年1月9日更新Windows操作系统个人使用-禁用掉一下一些不必要的服务-关闭占用资源的进程-禁用服务提升系统运行速度-让电脑不再卡顿-优雅草央千澈-长期更新
|
2月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
220 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
1月前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习果蔬识别系统实现
本项目基于Python和TensorFlow,使用ResNet卷积神经网络模型,对12种常见果蔬(如土豆、苹果等)的图像数据集进行训练,构建了一个高精度的果蔬识别系统。系统通过Django框架搭建Web端可视化界面,用户可上传图片并自动识别果蔬种类。该项目旨在提高农业生产效率,广泛应用于食品安全、智能农业等领域。CNN凭借其强大的特征提取能力,在图像分类任务中表现出色,为实现高效的自动化果蔬识别提供了技术支持。
基于Python深度学习果蔬识别系统实现
|
1月前
|
Python
[oeasy]python057_如何删除print函数_dunder_builtins_系统内建模块
本文介绍了如何删除Python中的`print`函数,并探讨了系统内建模块`__builtins__`的作用。主要内容包括: 1. **回忆上次内容**:上次提到使用下划线避免命名冲突。 2. **双下划线变量**:解释了双下划线(如`__name__`、`__doc__`、`__builtins__`)是系统定义的标识符,具有特殊含义。
32 3
|
2月前
|
存储 监控 Linux
嵌入式Linux系统编程 — 5.3 times、clock函数获取进程时间
在嵌入式Linux系统编程中,`times`和 `clock`函数是获取进程时间的两个重要工具。`times`函数提供了更详细的进程和子进程时间信息,而 `clock`函数则提供了更简单的处理器时间获取方法。根据具体需求选择合适的函数,可以更有效地进行性能分析和资源管理。通过本文的介绍,希望能帮助您更好地理解和使用这两个函数,提高嵌入式系统编程的效率和效果。
121 13

热门文章

最新文章