ArrayBlockingQueue源码解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: ArrayBlockingQueue是常见的阻塞队列之一 public class ArrayBlockingQueue<E> extends AbstractQueue<E> implements BlockingQueue<E>, Serializable { private stat.

ArrayBlockingQueue是常见的阻塞队列之一

public class ArrayBlockingQueue<E> extends AbstractQueue<E> implements BlockingQueue<E>, Serializable {
    private static final long serialVersionUID = -817911632652898426L;
    //可以看到ArrayBlockingQueue是通过数组来实现的队列效果
    final Object[] items;
    //记录队首元素的下标
    int takeIndex;
    //记录队尾元素的下标
    int putIndex;
    //记录队列中的元素个数
    int count;
    //通过ReentrantLock来实现同步
    final ReentrantLock lock;
    //有2个条件对象,分别表示队列不为空和队列不满的情况
    private final Condition notEmpty;
    private final Condition notFull;
    transient Itrs itrs;
    
    //默认的构造函数必须传入队列大小,所以是有界队列,默认不实现公平锁
    public ArrayBlockingQueue(int capacity) {
        this(capacity, false);
    }

    //可以通过fair为true来实现公平锁
    public ArrayBlockingQueue(int capacity, boolean fair) {
        if (capacity <= 0)
            throw new IllegalArgumentException();
        this.items = new Object[capacity];
        lock = new ReentrantLock(fair);
        notEmpty = lock.newCondition();
        notFull =  lock.newCondition();
    }
    
    //offer方法用于向队列中添加数据
    public boolean offer(E e) {
        //可以看出添加的数据不支持null值
        Objects.requireNonNull(e);
        final ReentrantLock lock = this.lock;
        //通过重入锁来实现同步
        lock.lock();
        try {
            //这里可以看到,如果队列已经满了的话直接就返回false,不会阻塞调用这个offer方法的线程
            if (count == items.length)
                return false;
            else {
                //如果队列没有满,就调用enqueue方法将元素添加到队列中
                enqueue(e);
                return true;
            }
        } finally {
            lock.unlock();
        }
    }
    
    //这个offer方法跟上面的offer方法最大的不同是多了个等待的时间
    public boolean offer(E e, long timeout, TimeUnit unit)
        throws InterruptedException {

        Objects.requireNonNull(e);
        long nanos = unit.toNanos(timeout);
        final ReentrantLock lock = this.lock;
        //获取可中断锁
        lock.lockInterruptibly();
        try {
            while (count == items.length) {
                //如果等待时间过了队列还是满的话就直接返回false,添加元素失败
                if (nanos <= 0L)
                    return false;
                //等待设置的时间
                nanos = notFull.awaitNanos(nanos);
            }
            //如果等待时间过了,队列有空间的话就会调用enqueue方法将元素添加到队列
            enqueue(e);
            return true;
        } finally {
            lock.unlock();
        }
    }
    
    //put方法和offer方法不一样的地方在于,如果队列是满的话,它就会把调用put方法的线程阻塞,直到队列里有空间
    public void put(E e) throws InterruptedException {
        Objects.requireNonNull(e);
        final ReentrantLock lock = this.lock;
        //因为后面调用了条件变量的await()方法,而await()方法会在中断标志设置后抛出InterruptedException异常后退出,所以还不如在加锁时候先看中断标志是不是被设置了,如果设置了直接抛出InterruptedException异常,就不用再去获取锁了
        lock.lockInterruptibly();
        try {
            while (count == items.length)
                //如果队列满的话就阻塞等待,直到notFull的signal方法被调用,也就是队列里有空间了
                notFull.await();
            //队列里有空间了执行添加操作
            enqueue(e);
        } finally {
            lock.unlock();
        }
    }
    
    //poll方法用于从队列中取数据,不会阻塞当前线程
    public E poll() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            //这里可以看到如果队列为空的话会直接返回null,否则调用dequeue方法取数据
            return (count == 0) ? null : dequeue();
        } finally {
            lock.unlock();
        }
    }
    
    //这个poll的重载方法也是加了个等待的时间,和上面offer的重载类似
    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
        long nanos = unit.toNanos(timeout);
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            while (count == 0) {
                if (nanos <= 0L)
                    return null;
                nanos = notEmpty.awaitNanos(nanos);
            }
            return dequeue();
        } finally {
            lock.unlock();
        }
    }
    
    //take方法也是用于取队列中的数据,但是和poll方法不同的是它有可能会阻塞当前的线程
    public E take() throws InterruptedException {
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            //当队列为空时,就会阻塞当前线程
            while (count == 0)
                notEmpty.await();
            //直到队列中有数据了,调用dequeue方法将数据返回
            return dequeue();
        } finally {
            lock.unlock();
        }
    }
    
    //将数据添加到队列中的具体方法
    private void enqueue(E x) {
        // assert lock.getHoldCount() == 1;
        // assert items[putIndex] == null;
        final Object[] items = this.items;
        items[putIndex] = x;
        //可以看出是通过循环数组实现的队列,当数组满了时下标就变成0了
        if (++putIndex == items.length) putIndex = 0;
        count++;
        //激活因为notEmpty条件而阻塞的线程,比如上面的调用take方法的线程
        notEmpty.signal();
    }

    //将数据从队列中取出的方法
    private E dequeue() {
        // assert lock.getHoldCount() == 1;
        // assert items[takeIndex] != null;
        final Object[] items = this.items;
        @SuppressWarnings("unchecked")
        E x = (E) items[takeIndex];
        //将对应的数组下标位置设置为null释放资源
        items[takeIndex] = null;
        if (++takeIndex == items.length) takeIndex = 0;
        count--;
        if (itrs != null)
            itrs.elementDequeued();
        //激活因为notFull条件而阻塞的线程,比如上面的调用put方法的线程
        notFull.signal();
        return x;
    }
    
    //获取队列的元素个数,加了锁,所以结果是准确的
    public int size() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            return count;
        } finally {
            lock.unlock();
        }
    }
}
  • ArrayBlockingQueue是一个用数组实现的有界阻塞队列,通过全局独占锁来实现出队和入队操作,同时只能有一个线程进行入队或出队操作
  • ArrayBlockingQueue的offer、poll通过简单的加锁进行入队出队操作,并且不会阻塞线程;而put、take则通过重入锁的条件对象实现队列满则等待、队列空则等待,会阻塞当前线程
  • ArrayBlockingQueue能通过size方法获取准确的队列元素个数
目录
相关文章
|
27天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
27天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
27天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
3天前
|
自然语言处理 数据处理 索引
mindspeed-llm源码解析(一)preprocess_data
mindspeed-llm是昇腾模型套件代码仓,原来叫"modelLink"。这篇文章带大家阅读一下数据处理脚本preprocess_data.py(基于1.0.0分支),数据处理是模型训练的第一步,经常会用到。
16 0
|
2月前
|
缓存 监控 Java
Java线程池提交任务流程底层源码与源码解析
【11月更文挑战第30天】嘿,各位技术爱好者们,今天咱们来聊聊Java线程池提交任务的底层源码与源码解析。作为一个资深的Java开发者,我相信你一定对线程池并不陌生。线程池作为并发编程中的一大利器,其重要性不言而喻。今天,我将以对话的方式,带你一步步深入线程池的奥秘,从概述到功能点,再到背景和业务点,最后到底层原理和示例,让你对线程池有一个全新的认识。
65 12
|
1月前
|
PyTorch Shell API
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。
|
28天前
|
安全 搜索推荐 数据挖掘
陪玩系统源码开发流程解析,成品陪玩系统源码的优点
我们自主开发的多客陪玩系统源码,整合了市面上主流陪玩APP功能,支持二次开发。该系统适用于线上游戏陪玩、语音视频聊天、心理咨询等场景,提供用户注册管理、陪玩者资料库、预约匹配、实时通讯、支付结算、安全隐私保护、客户服务及数据分析等功能,打造综合性社交平台。随着互联网技术发展,陪玩系统正成为游戏爱好者的新宠,改变游戏体验并带来新的商业模式。
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
110 2
|
3月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
93 0
|
3月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
79 0

热门文章

最新文章

推荐镜像

更多