【底层原理】数据库的最简单实现

简介: 所有应用软件之中,数据库可能是最复杂的。MySQL的手册有3000多页,PostgreSQL的手册有2000多页,Oracle的手册更是比它们相加还要厚。 但是,自己写一个最简单的数据库,做起来并不难。

所有应用软件之中,数据库可能是最复杂的。MySQL的手册有3000多页,PostgreSQL的手册有2000多页,Oracle的手册更是比它们相加还要厚。

但是,自己写一个最简单的数据库,做起来并不难。Reddit上面有一个帖子,只用了几百个字,就把原理讲清楚了。下面是我根据这个帖子整理的内容。

数据以文本形式保存

第一步,就是将所要保存的数据,写入文本文件。这个文本文件就是你的数据库。

为了方便读取,数据必须分成记录,每一条记录的长度规定为等长。比如,假定每条记录的长度是800字节,那么第5条记录的开始位置就在3200字节。

大多数时候,我们不知道某一条记录在第几个位置,只知道主键(primary key)的值。这时为了读取数据,可以一条条比对记录。但是这样做效率太低,实际应用中,数据库往往采用B树(B-tree)格式储存数据。

什么是B树

要理解B树,必须从二叉查找树(Binary search tree)讲起。

d416864aa281ae033093f6057ccc84c7345d1deb

二叉查找树是一种查找效率非常高的数据结构,它有三个特点。

(1)每个节点最多只有两个子树。

(2)左子树都为小于父节点的值,右子树都为大于父节点的值。

(3)在n个节点中找到目标值,一般只需要log(n)次比较。

二叉查找树的结构不适合数据库,因为它的查找效率与层数相关。越处在下层的数据,就需要越多次比较。极端情况下,n个数据需要n次比较才能找到目标值。对于数据库来说,每进入一层,就要从硬盘读取一次数据,这非常致命,因为硬盘的读取时间远远大于数据处理时间,数据库读取硬盘的次数越少越好。

B树是对二叉查找树的改进。它的设计思想是,将相关数据尽量集中在一起,以便一次读取多个数据,减少硬盘操作次数。

a973c6fc1aed68825008611cc4ae655f0dfaec59

B树的特点也有三个。

(1)一个节点可以容纳多个值。比如上图中,最多的一个节点容纳了4个值。

(2)除非数据已经填满,否则不会增加新的层。也就是说,B树追求"层"越少越好。

(3)子节点中的值,与父节点中的值,有严格的大小对应关系。一般来说,如果父节点有a个值,那么就有a+1个子节点。比如上图中,父节点有两个值(7和16),就对应三个子节点,第一个子节点都是小于7的值,最后一个子节点都是大于16的值,中间的子节点就是7和16之间的值。

这种数据结构,非常有利于减少读取硬盘的次数。假定一个节点可以容纳100个值,那么3层的B树可以容纳100万个数据,如果换成二叉查找树,则需要20层!假定操作系统一次读取一个节点,并且根节点保留在内存中,那么B树在100万个数据中查找目标值,只需要读取两次硬盘。

索引

数据库以B树格式储存,只解决了按照"主键"查找数据的问题。如果想查找其他字段,就需要建立索引(index)。

所谓索引,就是以某个字段为关键字的B树文件。假定有一张"雇员表",包含了员工号(主键)和姓名两个字段。可以对姓名建立索引文件,该文件以B树格式对姓名进行储存,每个姓名后面是其在数据库中的位置(即第几条记录)。查找姓名的时候,先从索引中找到对应第几条记录,然后再从表格中读取。

这种索引查找方法,叫做"索引顺序存取方法"(Indexed Sequential Access Method),缩写为ISAM。它已经有多种实现(比如C-ISAM库和D-ISAM库),只要使用这些代码库,就能自己写一个最简单的数据库。

高级功能

部署了最基本的数据存取(包括索引)以后,还可以实现一些高级功能。

1:SQL语言是数据库通用操作语言,所以需要一个SQL解析器,将SQL命令解析为对应的ISAM操作。

2:数据库连接(join)是指数据库的两张表通过"外键",建立连接关系。你需要对这种操作进行优化。

3:数据库事务(transaction)是指批量进行一系列数据库操作,只要有一步不成功,整个操作都不成功。所以需要有一个"操作日志",以便失败时对操作进行回滚。

4:备份机制:保存数据库的副本。

5:远程操作:使得用户可以在不同的机器上,通过TCP/IP协议操作数据库。

原文发布时间为:2018-09-21

原文作者:上海小胖

本文来自云栖社区合作伙伴“Python专栏”,了解相关信息可以关注“Python专栏”。


相关文章
|
1月前
|
缓存 NoSQL Redis
Redis原理—2.单机数据库的实现
本文概述了Redis数据库的核心结构和操作机制。
Redis原理—2.单机数据库的实现
|
4月前
|
存储 缓存 网络安全
南大通用GBase 8s 数据库 RHAC集群基本原理和搭建步骤
南大通用GBase 8s 数据库 RHAC集群基本原理和搭建步骤
|
9月前
|
存储 关系型数据库 MySQL
MySQL数据库进阶第六篇(InnoDB引擎架构,事务原理,MVCC)
MySQL数据库进阶第六篇(InnoDB引擎架构,事务原理,MVCC)
|
5月前
|
缓存 算法 关系型数据库
Mysql(3)—数据库相关概念及工作原理
数据库是一个以某种有组织的方式存储的数据集合。它通常包括一个或多个不同的主题领域或用途的数据表。
195 5
Mysql(3)—数据库相关概念及工作原理
|
4月前
|
存储 Java 关系型数据库
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接创建、分配、复用和释放等操作,并通过电商应用实例展示了如何选择合适的连接池库(如HikariCP)和配置参数,实现高效、稳定的数据库连接管理。
109 2
|
5月前
|
SQL 关系型数据库 数据库
SQL数据库:核心原理与应用实践
随着信息技术的飞速发展,数据库管理系统已成为各类组织和企业中不可或缺的核心组件。在众多数据库管理系统中,SQL(结构化查询语言)数据库以其强大的数据管理能力和灵活性,广泛应用于各类业务场景。本文将深入探讨SQL数据库的基本原理、核心特性以及实际应用。一、SQL数据库概述SQL数据库是一种关系型数据库
184 5
|
5月前
|
SQL 关系型数据库 MySQL
sql注入原理与实战(三)数据库操作
sql注入原理与实战(三)数据库操作
sql注入原理与实战(三)数据库操作
|
5月前
|
SQL 存储 Java
sql注入原理与实战(二)数据库原理
sql注入原理与实战(二)数据库原理
|
7月前
|
消息中间件 Kafka 数据库
深入理解Kafka的数据一致性原理及其与传统数据库的对比
【8月更文挑战第24天】在分布式系统中,确保数据一致性至关重要。传统数据库利用ACID原则保障事务完整性;相比之下,Kafka作为高性能消息队列,采用副本机制与日志结构确保数据一致性。通过同步所有副本上的数据、维护消息顺序以及支持生产者的幂等性操作,Kafka在不牺牲性能的前提下实现了高可用性和数据可靠性。这些特性使Kafka成为处理大规模数据流的理想工具。
145 6
|
8月前
|
存储 SQL 关系型数据库
(六)MySQL索引原理篇:深入数据库底层揭开索引机制的神秘面纱!
《索引原理篇》它现在终于来了!但对于索引原理及底层实现,相信大家多多少少都有了解过,毕竟这也是面试过程中出现次数较为频繁的一个技术点。在本文中就来一窥`MySQL`索引底层的神秘面纱!
494 5

热门文章

最新文章