寻找总和为n的连续子数列之算法分析

简介: 看到有这么道算法题在博客园讨论,算法eaglet和邀月都已经设计出来了,花了点时间读了下,学到点东西顺便记录下来吧。题目是从1...n的数列中,找出总和为n的连续子数列。这里先设好算法中需要用到的关键变量:s:目标子数列的第一个元素k:目标子数列的长度那么目标子数列可以表示为(s, k)1.

看到有这么道算法题在博客园讨论,算法eaglet邀月都已经设计出来了,花了点时间读了下,学到点东西顺便记录下来吧。

题目是从1...n的数列中,找出总和为n的连续子数列。

这里先设好算法中需要用到的关键变量:

  • s:目标子数列的第一个元素
  • k:目标子数列的长度

那么目标子数列可以表示为(s, k)

1. naive算法(n^2)

最笨的,但是最容易的想到的方法,就是穷举所有的子数列:

for s = 1 to n
for k = 1 to n-s+1
if sum(s, k) == n
output(s, k)

复杂度为:n + (n-1) + (n-2) + (n-3).... = n(n-1)/2

所以,其复杂度是O(n^2)

2. 用二分法改进的naive算法 (nlog2n)

我们需要充分利用输入的特性,这里,原始数列的一个很明显的特点就是有序,而利用有序数列提高效率的最常用方法就是二分法。这里我们可以注意到,针对某个子数列起始点s,我们没有必要逐个长度的去求和判断,而是利用其有序的性质,先求(s, (n+s)/2)的和。如果等于n则输出,如果大于n,则数列结尾在前半段,否则在后半段:

复制代码
for s = 1 to n
  low = s
  high = n
  while low < high
    mid = (low + high)/2
    sum = sum(s, mid)
    if sum == n
output(s, mid)
    else if(sum > n)
high = mid
    else
low = mid
复制代码

很明显,此算法复杂度为O(nlog2n)

3. 利用规律s*k <= n而设计的算法 (nlnn)

我们知道,s是目标子数列的第一个元素,也是最小的元素,所以必然有sum(s,k) >= s*k, 也就是n>=s*k, 也就是k <= n/s,于是算法可以写成:

for s = 1 to n
  for k = 1 to n/s
    if sum(s, k) == n
output(s, k);

此处,其复杂度并不是显而易见,但稍加分析:

复杂度 = n + n/2 + n/3 + n/4 + ... + n/n = n (1 + 1/2 + 1/3 + 1/4 + .. + 1/n),可以注意到,括号中的部分是一个调和级数,其和为lnn。

于是,此算法的复杂度为 O(nlnn),比算法2稍佳,因为lnn的底数要稍大些。

4. 利用规律s*k = n-k(k-1)/2而设计的算法(sqrt(n))

我们知道,对于子数列求和,其公式为:

n = k(s+ (s+k-1))/2 = s*k + k(k-1)/2

得出:

s*k = n - k(k-1)/2

由这个公式我们可以得到两点信息:

  • 1*k <= s*k = n-k(k-1)/2,推出n-k(k-1)/2 >= k
  • 如果n-k(k-1)/2能够整除k,则k是目标子数列的长度,而起始点可以由公式算出:s = (n-k(k-1)/2)/k

于是,算法就可以以k为变量递增,以n-k(k-1)/2 >= k为限制条件:

复制代码
k = 1
v = n-k(k-1)/2
while v >= k
  if v % k == 0
output(v/k, k) // 如果能整除,则找到解,并且起始点为v/k
  k++
  v = n-k(k-1)/2
复制代码

分析复杂度,我们只需关注k的变化,k是从1递增到某个数结束,关键是如何求这个截止的k。

我们的循环结束条件是:

n-k(k-1)/2 >= k

化简得到:

k^2 + k <= 2n

k^2 <=  2n - k

因为k > 0,于是有

k^2 < 2n

k < sqrt(2n)

所以,这个截止的k就应该是sqrt(2n)或者略小于它

到这里,就不难看出其算法复杂度为O(sqrt(n)) - 略去常数因子和低阶函数

目录
相关文章
|
7月前
|
算法 测试技术 C#
【动态规划】【同余前缀和】【多重背包】[推荐]2902. 和带限制的子多重集合的数目
【动态规划】【同余前缀和】【多重背包】[推荐]2902. 和带限制的子多重集合的数目
|
7月前
|
算法 测试技术 C++
【动态规划】【前缀和】【数学】2338. 统计理想数组的数目
【动态规划】【前缀和】【数学】2338. 统计理想数组的数目
|
算法 测试技术 C#
C++前缀和算法的应用:统计得分小于K的子数组数目
C++前缀和算法的应用:统计得分小于K的子数组数目
|
人工智能 BI 索引
【Leetcode -598.范围求和Ⅱ -599.两个列表的最小索引总和】
【Leetcode -598.范围求和Ⅱ -599.两个列表的最小索引总和】
48 0
|
7月前
|
算法 测试技术 C#
【动态规划】【数论】【区间合并】3041. 修改数组后最大化数组中的连续元素数目
【动态规划】【数论】【区间合并】3041. 修改数组后最大化数组中的连续元素数目
|
7月前
|
算法 测试技术 C++
【动态规划】【C++算法】801. 使序列递增的最小交换次数
【动态规划】【C++算法】801. 使序列递增的最小交换次数
|
7月前
|
算法 测试技术 C#
二分查找|前缀和|滑动窗口|2302:统计得分小于 K 的子数组数目
二分查找|前缀和|滑动窗口|2302:统计得分小于 K 的子数组数目
|
7月前
|
算法 测试技术 C#
【数学】LeetCode1526: 形成目标数组的子数组最少增加次数
【数学】LeetCode1526: 形成目标数组的子数组最少增加次数
|
7月前
|
存储 算法 程序员
【算法训练-数组 一】【数组子集】:最长无重复子数组
【算法训练-数组 一】【数组子集】:最长无重复子数组
45 0
|
Cloud Native Go
801. 使序列递增的最小交换次数:动态规划
这是 力扣上的 801. 使序列递增的最小交换次数,难度为 困难。
102 1