Go语言学习笔记(七)杀手锏 Goroutine + Channel

简介: 加 Golang学习 QQ群共同学习进步成家立业工作 ^-^ 群号:96933959GoroutineGo语言的主要的功能在于令人简易使用的并行设计,这个方法叫做Goroutine,通过Goroutine能够让你的程序以异步的方式运行,而不需要担心一个函数导致程序中断,因此Go语言也非常地适合网络服务。

加 Golang学习 QQ群共同学习进步成家立业工作 ^-^ 群号:96933959

Goroutine

Go语言的主要的功能在于令人简易使用的并行设计,这个方法叫做Goroutine,通过Goroutine能够让你的程序以异步的方式运行,而不需要担心一个函数导致程序中断,因此Go语言也非常地适合网络服务。

我们通过go让其中一个函数同步运行,如此就不需要等待该函数运行完后才能运行下一个函数。

func main() {
    // 通过 `go`,我们可以把这个函数异步执行,这样就不会阻塞往下执行。
    go loop()
    // 执行 Other
}

Goroutine是类似线程的概念(但Goroutine并不是线程)。线程属于系统层面,通常来说创建一个新的线程会消耗较多的资源且管理不易。而 Goroutine就像轻量级的线程,但我们称其为并发,一个Go程序可以运行超过数万个 Goroutine,并且这些性能都是原生级的,随时都能够关闭、结束。一个核心里面可以有多个Goroutine,通过GOMAXPROCS参数你能够限制Gorotuine可以占用几个系统线程来避免失控。

在内置的官方包中也不时能够看见Goroutine的应用,像是net/http中用来监听网络服务的函数实际上是创建一个不断运行循环的Goroutine。

 

设置同时执行的cpu数(GOMAXPROCS)

GOMAXPROCS 在调度程序优化后会去掉,默认用系统所有资源。

func main() {
    num := runtime.NumCPU()    //本地机器的逻辑CPU个数
    runtime.GOMAXPROCS(num)    //设置可同时执行的最大CPU数,并返回先前的设置
    fmt.Println(num)
}

 

Goroutine中使用recover

应用场景,如果某个goroutine panic了,而且这个goroutine里面没有捕获(recover),那么整个进程就会挂掉。所以,好的习惯是每当go产生一个goroutine,就需要写下recover。

var (
    domainSyncChan = make(chan int, 10)
)

func domainPut(num int) {
    defer func() {
        err := recover()
        if err != nil {
            fmt.Println("error to chan put.")
        }
    }()
    domainSyncChan <- num
    
    panic("error....")
}

func main() {
    for i := 0; i < 10; i++ {
        domainName := i
        go domainPut(domainName)
    }
    time.Sleep(time.Second * 2)
}

 

Goroutine 栗子

package main

import (
    "fmt"
    "sync"
    "time"
)

var (
    m    = make(map[int]uint64)
    lock sync.Mutex //申明一个互斥锁
)

type task struct {
    n int
}

func calc(t *task) {
    defer func() {
        err := recover()
        if err != nil {
            fmt.Println("error...")
            return
        }
    }()

    var sum uint64
    sum = 1
    for i := 1; i < t.n; i++ {
        sum *= uint64(i)
    }

    lock.Lock() //写全局数据加互斥锁
    m[t.n] = sum
    lock.Unlock() //解锁
}

func main() {
    for i := 0; i < 10; i++ {
        t := &task{n: i}
        go calc(t) // Goroutine来执行任务
    }

    time.Sleep(time.Second) // Goroutine异步,所以等一秒到任务完成

    lock.Lock() //读全局数据加锁
    for k, v := range m {
        fmt.Printf("%d! = %v\n", k, v)
    }
    fmt.Println(len(m))
    lock.Unlock() //解锁
}

 

Goroutine 栗子(等待所有任务退出主程序再退出)

package main

import (
    "sync"
    "fmt"
    "time"
)

func calc(w *sync.WaitGroup, i int)  {
    fmt.Println("calc: ", i)
    time.Sleep(time.Second)
    w.Done()
}

func main()  {
    wg := sync.WaitGroup{}
    for i:=0; i<10; i++ {
        wg.Add(1)
        go calc(&wg, i)
    }
    wg.Wait()
    fmt.Println("all goroutine finish")
}

 

Channel

channel,管道、队列,先进先出,用来异步传递数据。channel加上goroutine,就形成了一种既简单又强大的请求处理模型,使高并发和线程同步之间代码的编写变得异常简单。

线程安全,多个goroutine同时访问,不需要加锁。

channel是有类型的,一个整数的channel只能存放整数。

channel使用

//chan申明
var userChan chan interface{}          // chan里面放interface类型
userChan = make(chan interface{}, 10)  // make初始化,大小为10

var readOnlyChan <-chan int            // 只读chan
var writeOnlyChan chan<- int           // 只写chan
//chan放取数据
userChan <- "nick"
name := <- userChan
name, ok := <- userChan
//关闭chan
intChan := make(chan int, 1)
intChan <- 9
close(intChan)
// range chan
intChan := make(chan int, 10)
for i := 0; i < 10; i++ {
    intChan <- i
}
close(intChan)

for v := range intChan {
    fmt.Println(v)
}

  

放入chan数据个数超过初始化指定大小会怎样?

userChan := make(chan interface{})
userChan <- "nick"
// 错误!fatal error: all goroutines are asleep - deadlock!
// 开启race会一直阻塞

开启一个goroutine来放入初始化未指定大小的chan不会报错。

即放即走,在等放入时有来拿数据的,就直接拿走。

userChan := make(chan interface{})
go func() {
    userChan <- "nick"
}()
name := <- userChan
userChan := make(chan interface{})
go func() {
    for {
        userChan <- "nick"
    }
}()
for {
    name := <- userChan
    fmt.Println(name)
    time.Sleep(time.Millisecond)
}

 

chan关闭与不关闭

关闭chan后再放入数据会 panic: send on closed channel。

chan不关闭取超数据的情况会报 deadlock

func main() {
    intChan := make(chan int, 10)

    for i := 0; i < 10; i++ {
        intChan <- i
    }
    for {
        //十次后 fatal error: all goroutines are asleep - deadlock!
        i := <- intChan
        fmt.Println(i)
        time.Sleep(time.Second)
    }
}

chan关闭的情况取超出值为类型默认值,如int为0

func main() {
    intChan := make(chan int, 10)

    for i := 0; i < 10; i++ {
        intChan <- i
    }
    close(intChan)

    for {
        i := <- intChan
        //十次后i值都为0,不报错
        time.Sleep(time.Second)
        fmt.Println(i)
    }
}

判断chan是否取完

func main() {
    intChan := make(chan int, 10)

    for i := 0; i < 10; i++ {
        intChan <- i
    }
    close(intChan)

    for {
        i, ok := <- intChan
        if !ok {
            fmt.Println("channel is close.")
            return
        }
        fmt.Println(i)
    }
}

 

channel 栗子

栗子一

func sendData(ch chan<- string) {
    ch <- "go"
    ch <- "java"
    ch <- "c"
    ch <- "c++"
    ch <- "python"
    close(ch)
}

func getData(ch <-chan string, chColse chan bool) {
    for {
        str, ok := <-ch
        if !ok {
            fmt.Println("chan is close.")
            break
        }
        fmt.Println(str)
    }
    chColse <- true
}

func main() {
    ch := make(chan string, 10)
    chColse := make(chan bool, 1)
    go sendData(ch)
    go getData(ch, chColse)
    <-chColse
    close(chColse)
}

 

栗子二:interface类型chan,取出后转化为对应类型。

type user struct {
    Name string
}

func main() {
    userChan := make(chan interface{}, 1)

    u := user{Name: "nick"}
    userChan <- &u
    close(userChan)

    var u1 interface{}
    u1 = <-userChan

    var u2 *user
    u2, ok := u1.(*user)
    if !ok {
        fmt.Println("cant not convert.")
        return
    }
    fmt.Println(u2)
}

 

channel 超时处理

利用select来处理chan超时。

for {
    select {
    case v := <-chan1:
        fmt.Println(v)
    case v := <-chan2:
        fmt.Println(v)
    default:
        time.Sleep(time.Second)
        fmt.Println("timeout...")
    }
}

time.After()定时器来做处理。

在time.After()计时器触发之前,底层计时器不会被垃圾收集器回收。

select {
case m := <-c:
    handle(m)
case <-time.After(5 * time.Minute):
    fmt.Println("timed out")
}
  定时器栗子

 

Goroutine+Channel 栗子

栗子一

多个goroutine处理任务;

等待一组channel的返回结果。

func calc(taskChan, resChan chan int, exitChan chan bool) {
    defer func() {
        err := recover()
        if err != nil {
            fmt.Println("error...")
            return 
        }
    }()
    
    for v := range taskChan {
        // 任务处理逻辑
        flag := true
        for i := 2; i < v; i++ {
            if v%i == 0 {
                flag = false
                break
            }
        }
        if flag {
            //结果进chan
            resChan <- v
        }
    }
    //处理完进退出chan
    exitChan <- true
}

func main() {
    //任务chan
    intChan := make(chan int, 1000)
    //结果chan
    resChan := make(chan int, 1000)
    //退出chan
    exitChan := make(chan bool, 8)

    go func() {
        for i := 0; i < 1000; i++ {
            intChan <- i
        }
        close(intChan)
    }()

    //启动8个goroutine做任务
    for i := 0; i < 8; i++ {
        go calc(intChan, resChan, exitChan)
    }

    go func() {
        //等所有goroutine结束
        for i := 0; i < 8; i++ {
            <-exitChan
        }
        close(resChan)
        close(exitChan)
    }()

    for v := range resChan {
        fmt.Println(v)
    }
}

 

栗子二

等待一组channel的返回结果 sync.WaitGroup 的解决方法。

WaitGroup用于等待一组线程的结束。父线程调用Add方法来设定应等待的线程的数量。每个被等待的线程在结束时应调用Done方法。同时,主线程里可以调用Wait方法阻塞至所有线程结束。

func merge(cs <-chan int) <-chan int {
    var wg sync.WaitGroup
    out := make(chan int)

    output := func(c <-chan int) {
        for n := range c {
            out <- n
        }
        wg.Done()
    }
    wg.Add(len(cs))

    for _, c := range cs {
        go output(c)
    }

    go func() {
        wg.Wait()
        close(out)
    }()
    return out
}

 

目录
相关文章
|
26天前
|
存储 Go 开发者
Go语言中的并发编程与通道(Channel)的深度探索
本文旨在深入探讨Go语言中并发编程的核心概念和实践,特别是通道(Channel)的使用。通过分析Goroutines和Channels的基本工作原理,我们将了解如何在Go语言中高效地实现并行任务处理。本文不仅介绍了基础语法和用法,还深入讨论了高级特性如缓冲通道、选择性接收以及超时控制等,旨在为读者提供一个全面的并发编程视角。
|
26天前
|
安全 Go 数据处理
Go语言中的并发编程:掌握goroutine和channel的艺术####
本文深入探讨了Go语言在并发编程领域的核心概念——goroutine与channel。不同于传统的单线程执行模式,Go通过轻量级的goroutine实现了高效的并发处理,而channel作为goroutines之间通信的桥梁,确保了数据传递的安全性与高效性。文章首先简述了goroutine的基本特性及其创建方法,随后详细解析了channel的类型、操作以及它们如何协同工作以构建健壮的并发应用。此外,还介绍了select语句在多路复用中的应用,以及如何利用WaitGroup等待一组goroutine完成。最后,通过一个实际案例展示了如何在Go中设计并实现一个简单的并发程序,旨在帮助读者理解并掌
|
26天前
|
安全 Java Go
Go语言中的并发编程:掌握goroutine与通道的艺术####
本文深入探讨了Go语言中的核心特性——并发编程,通过实例解析goroutine和通道的高效使用技巧,旨在帮助开发者提升多线程程序的性能与可靠性。 ####
|
1月前
|
安全 Go 调度
探索Go语言的并发模型:goroutine与channel
在这个快节奏的技术世界中,Go语言以其简洁的并发模型脱颖而出。本文将带你深入了解Go语言的goroutine和channel,这两个核心特性如何协同工作,以实现高效、简洁的并发编程。
|
1月前
|
Go 数据处理 调度
探索Go语言的并发模型:Goroutines与Channels的协同工作
在现代编程语言中,Go语言以其独特的并发模型脱颖而出。本文将深入探讨Go语言中的Goroutines和Channels,这两种机制如何协同工作以实现高效的并发处理。我们将通过实际代码示例,展示如何在Go程序中创建和管理Goroutines,以及如何使用Channels进行Goroutines之间的通信。此外,本文还将讨论在使用这些并发工具时可能遇到的常见问题及其解决方案,旨在为Go语言开发者提供一个全面的并发编程指南。
|
1月前
|
Go 调度 开发者
探索Go语言中的并发模式:goroutine与channel
在本文中,我们将深入探讨Go语言中的核心并发特性——goroutine和channel。不同于传统的并发模型,Go语言的并发机制以其简洁性和高效性著称。本文将通过实际代码示例,展示如何利用goroutine实现轻量级的并发执行,以及如何通过channel安全地在goroutine之间传递数据。摘要部分将概述这些概念,并提示读者本文将提供哪些具体的技术洞见。
|
2月前
|
安全 Go 调度
探索Go语言的并发之美:goroutine与channel
在这个快节奏的技术时代,Go语言以其简洁的语法和强大的并发能力脱颖而出。本文将带你深入Go语言的并发机制,探索goroutine的轻量级特性和channel的同步通信能力,让你在高并发场景下也能游刃有余。
|
2月前
|
存储 安全 Go
探索Go语言的并发模型:Goroutine与Channel
在Go语言的多核处理器时代,传统并发模型已无法满足高效、低延迟的需求。本文深入探讨Go语言的并发处理机制,包括Goroutine的轻量级线程模型和Channel的通信机制,揭示它们如何共同构建出高效、简洁的并发程序。
|
2月前
|
存储 Go 调度
深入理解Go语言的并发模型:goroutine与channel
在这个快速变化的技术世界中,Go语言以其简洁的并发模型脱颖而出。本文将带你穿越Go语言的并发世界,探索goroutine的轻量级特性和channel的同步机制。摘要部分,我们将用一段对话来揭示Go并发模型的魔力,而不是传统的介绍性文字。
|
2月前
|
安全 Go 调度
探索Go语言的并发模型:Goroutine与Channel的魔力
本文深入探讨了Go语言的并发模型,不仅解释了Goroutine的概念和特性,还详细讲解了Channel的用法和它们在并发编程中的重要性。通过实际代码示例,揭示了Go语言如何通过轻量级线程和通信机制来实现高效的并发处理。