下载 23种设计模式源码 :http://download.csdn.net/download/knight_black_bob/8936043
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
创建型模式,共五种:
工厂方法模式 抽象工厂模式 单例模式 建造者模式 原型模式
结构型模式,共七种:
适配器模式 装饰器模式 代理模式 外观模式 桥接模式 组合模式 享元模式
行为型模式,共十一种:
策略模式 模板方法模式 观察者模式 迭代子模式 责任链模式 命令模式
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
好多的 加法运算 ,没有发现 加括号的 的加减乘除的 解释器,参考了 别人的 算法,写了 这个 ,只能说别人的算法好,,,,
算法地址:http://blog.sina.com.cn/s/blog_6759f4610100j2qt.html
package 设计模式.解释器模式; import java.util.HashMap; import java.util.Map; public class Context { private final Map<String, Integer> valueMap = new HashMap<String, Integer>(); public void addValue(final String key, final int value) { valueMap.put(key, Integer.valueOf(value)); } public int getValue(final String key) { return valueMap.get(key).intValue(); } }
package 设计模式.解释器模式; public abstract class AbstractExpression { public abstract int interpreter(Context context); }
package 设计模式.解释器模式; public class TerminalExpression extends AbstractExpression { private final int i; public TerminalExpression(final int i) { this.i = i; } @Override public int interpreter(final Context context) { return this.i; } }
package 设计模式.解释器模式; public class AddNonterminalExpression extends AbstractExpression { private final AbstractExpression left; private final AbstractExpression right; public AddNonterminalExpression(final AbstractExpression left, final AbstractExpression right) { this.left = left; this.right = right; } @Override public int interpreter(final Context context) { return this.left.interpreter(context) + this.right.interpreter(context); } }
package 设计模式.解释器模式; public class SubtractNonterminalExpression extends AbstractExpression { private final AbstractExpression left; private final AbstractExpression right; public SubtractNonterminalExpression(final AbstractExpression left, final AbstractExpression right) { this.left = left; this.right = right; } @Override public int interpreter(final Context context) { return this.left.interpreter(context) - this.right.interpreter(context); } }
package 设计模式.解释器模式; public class MultiplyNonterminalExpression extends AbstractExpression { private final AbstractExpression left; private final AbstractExpression right; public MultiplyNonterminalExpression(final AbstractExpression left, final AbstractExpression right) { this.left = left; this.right = right; } @Override public int interpreter(final Context context) { return this.left.interpreter(context) * this.right.interpreter(context); } }
package 设计模式.解释器模式; public class DivisionNonterminalExpression extends AbstractExpression { private final AbstractExpression left; private final AbstractExpression right; public DivisionNonterminalExpression(final AbstractExpression left, final AbstractExpression right) { this.left = left; this.right = right; } @Override public int interpreter(final Context context) { final int value = this.right.interpreter(context); if (value != 0) { return this.left.interpreter(context) / value; } return -1111; } }
package 设计模式.解释器模式; //解释器模式定义语言的文法,并且建立一个解释器来解释该语言中的句子。它属于类的行为模式。这里的语言意思是使用规定格式和语法的代码。 //应用环境: //如果一种特定类型的问题发生的频率足够高,那么可能就值得将该问题的各个实例表述为一个简单语言中的句子。 //这样就可以构建一个解释器,该解释器通过解释这些句子来解决该问题。而且当文法简单、效率不是关键问题的时候效果最好。 public class InterpreterDemo { // 40~47 ( ) * + , - . / 0~9 是 48~57 a~z 是 97~122 A~Z 是 65~90 61 = // ( a+ b * ( a + b ) * a ) * b + a // [1, +, 2, *, (, 3, +, 4, *, 5, ), *, 1, #] class NumQueue { char num[]; int head, rear; NumQueue() { num = new char[1]; head = -1; rear = -1; } public boolean isEmpty() { if (head == rear) return true; else return false; } public void inQueue(char ch) { num[++rear] = ch; } public void init() { head = -1; rear = -1; for (int i = 0; i < 1; i++) num[i] = '\0'; } public String getNumber() { String str = new String(num); return str; } } class StackAbstractExpression { AbstractExpression data[]; int top; int base; StackAbstractExpression() { data = new AbstractExpression[15]; top = -1; base = -1; } public AbstractExpression getTop() { return data[top]; } public void push(AbstractExpression ae) { data[++top] = ae; } public AbstractExpression pop() { return data[top--]; } public boolean isEmpty() { if (top == base) return true; else return false; } public void init() { top = -1; base = -1; } } class StackOper { char data[]; int top; int base; StackOper() { data = new char[20]; top = -1; base = -1; } public char getTop() { return data[top]; } public void init() { top = -1; base = -1; } public void push(char ch) { data[++top] = ch; } public char pop() { return data[top--]; } public boolean isEmpty() { if (top == base) return true; else return false; } } static StackAbstractExpression stackData; static StackOper stackOper; static NumQueue queue; static boolean rs, divErr = false; public static void doHandler(String exp, Context context){ queue = new InterpreterDemo().new NumQueue(); stackData = new InterpreterDemo().new StackAbstractExpression(); stackOper = new InterpreterDemo().new StackOper(); exp = exp.replaceAll(" ",""); exp+= "#"; stackOper.init(); stackData.init(); stackOper.push('#'); String dou = ""; int ps = 0, pc = 0; System.out.println(" exp: "+exp); char ch[] = exp.toCharArray(); char op; int i = 0; op = ch[i]; while (op != '#' || stackOper.getTop() != '#') { if ((op > 96 && op < 123) ) { queue.inQueue(op); i++; op = ch[i]; } else { if (!queue.isEmpty()) { dou = queue.getNumber(); //System.out.println ("stackData.push (" + dou + ") "); stackData.push(new TerminalExpression(context.getValue(dou))); queue.init(); } ps = getSPri(stackOper.getTop()); pc = getCPri(op); if (stackOper.getTop() == '(' && op == '#' || stackOper.getTop() == ')' && op == '(' || stackOper.getTop() == '#' && op == ')') { rs = true; } if (ps < pc) { //System.out.println (" 操作符在栈内的优先级 " + ps +" 操作符进栈的优先级优先级 "+ pc +" "+ "stackOper.push " + op + " "); stackOper.push(op); i++; op = ch[i]; } if (ps == pc) { char c = stackOper.pop(); //System.out.println (" 操作符在栈内的优先级 " + ps +" 操作符进栈的优先级优先级 "+ pc + "stackOper.pop " + c + " "); op = ch[++i]; } if (ps > pc) { char theta = stackOper.pop(); AbstractExpression b = stackData.pop(); AbstractExpression a = stackData.pop(); stackData.push(operate(a, b, theta)); //System.out.println (" 操作符在栈内的优先级 " + ps +" 操作符进栈的优先级优先级 "+ pc +" stackData.push " +operate(a, b, theta)+ " "); } } } double res = stackData.getTop().interpreter(context); System.out.println(res); rs = true; } public static AbstractExpression operate(AbstractExpression a, AbstractExpression b, char ch) { AbstractExpression res =null; switch (ch) { case '+': res = new AddNonterminalExpression( a, b); break; case '-': res = new SubtractNonterminalExpression( a, b); break; case '*': res = new MultiplyNonterminalExpression( a, b); break; case '/': res = new DivisionNonterminalExpression( a, b); break; default: break; } return res; } // 操作符在栈内的优先级 public static int getSPri(char op) { int pr = 0; switch (op) { case ')': pr = 6; break; case '*': pr = 5; break; case '/': pr = 5; break; case '+': pr = 3; break; case '-': pr = 3; break; case '(': pr = 1; break; case '#': pr = 0; break; } return pr; } // 操作符进栈的优先级优先级 public static int getCPri(char op) { int pr = 0; switch (op) { case ')': pr = 1; break; case '*': pr = 4; break; case '/': pr = 4; break; case '+': pr = 2; break; case '-': pr = 2; break; case '(': pr = 6; break; case '#': pr = 0; break; } return pr; } public static void main(String[] args) { final Context context = new Context(); context.addValue("a", 1); context.addValue("b", 2); doHandler("(a+b*(a+b)*a)*b+a",context); } }
捐助开发者
在兴趣的驱动下,写一个免费
的东西,有欣喜,也还有汗水,希望你喜欢我的作品,同时也能支持一下。 当然,有钱捧个钱场(右上角的爱心标志,支持支付宝和PayPal捐助),没钱捧个人场,谢谢各位。
谢谢您的赞助,我会做的更好!