spark sql maven idea打包

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 前提 ,给 自己 的mysql  本地添加 远程访问权限 mysql> grant all privileges on *.* to root@"%" identified by 'root' with grant option; mysql> flush privileges; 测试远程连接是否通? mysql -h10.

前提 ,给 自己 的mysql  本地添加 远程访问权限

mysql> grant all privileges on *.* to root@"%" identified by 'root' with grant option;

mysql> flush privileges;

测试远程连接是否通?
mysql  -h10.2.6.60 -uroot -proot

 

 

 

sql demo

package com.baoy.sql

import java.sql.DriverManager

import org.apache.spark.rdd.JdbcRDD
import org.apache.spark.{SparkConf, SparkContext}

/**
  * Created by John on 2016/4/1.
  * com.baoy.sql.Sql
  */
object Sql {

  def main(args: Array[String]) {
    val sparkConf = new SparkConf()
      .setAppName("streamsql")
    val sparkContext = new SparkContext(sparkConf)

    val rdd =new  JdbcRDD(sparkContext,
      () =>{
        Class.forName("com.mysql.jdbc.Driver").newInstance()
        DriverManager.getConnection("jdbc:mysql://10.2.6.60:3306/database", "root", "root")
      },
      "select count(*) from t_user where ?=?",
      1, 1, 1,
      r => r.getString(1)).cache()

    println(rdd.count())
    sparkContext.stop()
  }
}

 

 

pom

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>com.baoy</groupId>
  <artifactId>SparkDemo</artifactId>
  <version>1.0-SNAPSHOT</version>
  <inceptionYear>2008</inceptionYear>
  <properties>
    <scala.version>2.11.8</scala.version>
  </properties>

  <repositories>
    <repository>
      <id>scala-tools.org</id>
      <name>Scala-Tools Maven2 Repository</name>
      <url>http://scala-tools.org/repo-releases</url>
    </repository>
  </repositories>

  <pluginRepositories>
    <pluginRepository>
      <id>scala-tools.org</id>
      <name>Scala-Tools Maven2 Repository</name>
      <url>http://scala-tools.org/repo-releases</url>
    </pluginRepository>
  </pluginRepositories>

  <dependencies>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-core_2.10</artifactId>
      <version>1.4.1</version>
      <scope>provided</scope>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-streaming_2.10</artifactId>
      <version>1.4.1</version>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-sql_2.10</artifactId>
      <version>1.4.1</version>
      <scope>provided</scope>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-hive_2.10</artifactId>
      <version>1.4.1</version>
    </dependency>
    <dependency>
      <groupId>org.scala-lang</groupId>
      <artifactId>scala-library</artifactId>
      <version>${scala.version}</version>
    </dependency>
    <dependency>
      <groupId>mysql</groupId>
      <artifactId>mysql-connector-java</artifactId>
      <version>5.1.18</version>
    </dependency>
    <dependency>
      <groupId>org.apache.commons</groupId>
      <artifactId>commons-pool2</artifactId>
      <version>2.3</version>
    </dependency>
    <dependency>
      <groupId>redis.clients</groupId>
      <artifactId>jedis</artifactId>
      <version>2.7.3</version>
    </dependency>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>4.4</version>
      <scope>test</scope>
    </dependency>

  </dependencies>

  <build>
    <sourceDirectory>src/main/scala</sourceDirectory>
    <testSourceDirectory>src/test/scala</testSourceDirectory>
    <plugins>
      <plugin>
        <groupId>org.scala-tools</groupId>
        <artifactId>maven-scala-plugin</artifactId>
        <executions>
          <execution>
            <goals>
              <goal>compile</goal>
              <goal>testCompile</goal>
            </goals>
          </execution>
        </executions>
        <configuration>
          <scalaVersion>${scala.version}</scalaVersion>
          <args>
            <arg>-target:jvm-1.5</arg>
          </args>
        </configuration>
      </plugin>
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-eclipse-plugin</artifactId>
        <configuration>
          <downloadSources>true</downloadSources>
          <buildcommands>
            <buildcommand>ch.epfl.lamp.sdt.core.scalabuilder</buildcommand>
          </buildcommands>
          <additionalProjectnatures>
            <projectnature>ch.epfl.lamp.sdt.core.scalanature</projectnature>
          </additionalProjectnatures>
          <classpathContainers>
            <classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINER</classpathContainer>
            <classpathContainer>ch.epfl.lamp.sdt.launching.SCALA_CONTAINER</classpathContainer>
          </classpathContainers>
        </configuration>
      </plugin>
    </plugins>
  </build>
  <reporting>
    <plugins>
      <plugin>
        <groupId>org.scala-tools</groupId>
        <artifactId>maven-scala-plugin</artifactId>
        <configuration>
          <scalaVersion>${scala.version}</scalaVersion>
        </configuration>
      </plugin>
    </plugins>
  </reporting>
</project>

 

 

提交:

spark-submit  --class com.baoy.sql.Sql  --master local  /home/cloudera/baoyou/project/scalasql.jar

 

运行 结果:



 

 

 

 

 

 

idea 打包

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

捐助开发者

在兴趣的驱动下,写一个免费的东西,有欣喜,也还有汗水,希望你喜欢我的作品,同时也能支持一下。 当然,有钱捧个钱场(右上角的爱心标志,支持支付宝和PayPal捐助),没钱捧个人场,谢谢各位。



 
 
 谢谢您的赞助,我会做的更好!

 

 

 

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
目录
相关文章
|
4月前
|
SQL JSON 分布式计算
Spark SQL架构及高级用法
Spark SQL基于Catalyst优化器与Tungsten引擎,提供高效的数据处理能力。其架构涵盖SQL解析、逻辑计划优化、物理计划生成及分布式执行,支持复杂数据类型、窗口函数与多样化聚合操作,结合自适应查询与代码生成技术,实现高性能大数据分析。
|
6月前
|
Java 应用服务中间件 Maven
在IntelliJ IDEA中如何配置使用Maven以创建Tomcat环境
所以,别担心这些工具看起来有些吓人,实际上这些都是为了帮助你更好的完成工作的工具,就像超市里的各种烹饪工具一样,尽管它们看起来可能很复杂,但只要你学会用,它们会为你烹饪出一道道美妙的食物。这就是学习新技能的乐趣,让我们一起享受这个过程,攀登知识的高峰!
391 27
|
6月前
|
Java 应用服务中间件 Apache
在IntelliJ IDEA中使用Maven配置Tomcat环境
此配置方法具有较高的实用性,简单易懂。遵循以上步骤,您将能顺利在IntelliJ IDEA中使用Maven配置Tomcat环境,从而进行Web项目的开发和调试。
727 18
|
9月前
|
前端开发 Java 编译器
当flutter react native 等混开框架-并且用vscode-idea等编译器无法打包apk,打包安卓不成功怎么办-直接用android studio如何打包安卓apk -重要-优雅草卓伊凡
当flutter react native 等混开框架-并且用vscode-idea等编译器无法打包apk,打包安卓不成功怎么办-直接用android studio如何打包安卓apk -重要-优雅草卓伊凡
245 36
当flutter react native 等混开框架-并且用vscode-idea等编译器无法打包apk,打包安卓不成功怎么办-直接用android studio如何打包安卓apk -重要-优雅草卓伊凡
|
8月前
|
SQL 分布式计算 资源调度
Dataphin功能Tips系列(48)-如何根据Hive SQL/Spark SQL的任务优先级指定YARN资源队列
如何根据Hive SQL/Spark SQL的任务优先级指定YARN资源队列
278 4
|
10月前
|
SQL 分布式计算 Java
Spark SQL向量化执行引擎框架Gluten-Velox在AArch64使能和优化
本文摘自 Arm China的工程师顾煜祺关于“在 Arm 平台上使用 Native 算子库加速 Spark”的分享,主要内容包括以下四个部分: 1.技术背景 2.算子库构成 3.算子操作优化 4.未来工作
1202 0
|
12月前
|
SQL IDE 数据库连接
IntelliJ IDEA处理大文件SQL:性能优势解析
在数据库开发和管理工作中,执行大型SQL文件是一个常见的任务。传统的数据库管理工具如Navicat在处理大型SQL文件时可能会遇到性能瓶颈。而IntelliJ IDEA,作为一个强大的集成开发环境,提供了一些高级功能,使其在执行大文件SQL时表现出色。本文将探讨IntelliJ IDEA在处理大文件SQL时的性能优势,并与Navicat进行比较。
209 4
|
12月前
|
Java 应用服务中间件 Maven
Maven的三种项目打包方式——pom,jar,war的区别
Maven 提供了多种打包方式,分别适用于不同类型的项目。pom 用于父项目或聚合项目,便于项目的结构和依赖管理;jar 用于Java类库或可执行的Java应用程序;war 则专用于Java Web应用程序的部署。理解这些打包方式的用途和特点,可以帮助开发者更好地配置和管理Maven项目,确保构建和部署过程的顺利进行。无论是单模块项目还是多模块项目,选择合适的打包方式对于项目的成功至关重要。
1689 3
|
Java Maven Android开发
【Azure Developer】VS Code打包Java maven Project 遇见 BUILD FAILURE
Unknown lifecycle phase "lean". You must specify a valid lifecycle phase or a goal in the format <plugin-prefix>:<goal> or <plugin-group-id>:<plugin-artifact-id>[:<plugin-version>]:<goal>
237 5
|
缓存 IDE Java
idea的maven项目打包时没有source下的文件
【10月更文挑战第21天】idea的maven项目打包时没有source下的文件
820 1

推荐镜像

更多