深度学习笔记13:Tensorflow实战之手写mnist手写数字识别

简介:

上一讲笔者和大家一起学习了如何使用 Tensorflow 构建一个卷积神经网络模型。本节我们将继续利用 Tensorflow 的便捷性完成 mnist 手写数字数据集的识别实战。mnist 数据集是 Yann Lecun 大佬基于美国国家标准技术研究所构建的一个研究深度学习的手写数字的数据集。mnist 由 70000 张不同人手写的 0-9 10个数字的灰度图组成。本节笔者就和大家一起研究如何利用 Tensorflow 搭建一个 CNN 模型来识别这些手写的数字。

a994a2dc18cce21dde26a106b9199ba2c1d6e00e

数据导入

mnist 作为标准深度学习数据集,在各大深度学习开源框架中都默认有进行封装。所以我们直接从 Tensorflow 中导入相关的模块即可:

 

import tensorflow as tf
from tensorflow.examples.tutorials.mnist
import input_data
# load mnist data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

2336ccc89dce340b8570fb953cc5096d6718a442
快速搭建起一个简易神经网络模型

数据导入之后即可按照 Tensorflow 的范式创建相应的 Tensor 变量然后创建会话:

 

# create the session
sess = tf.InteractiveSession()
# create variables and run the session
x = tf.placeholder('float', shape=[None, 784])
y_ = tf.placeholder('float', shape=[None, 10])
b = tf.Variable(tf.zeros([10]))
W = tf.Variable(tf.zeros([784, 10]))
sess.run(tf.global_variables_initializer())

定义前向传播过程和损失函数:

 

# define the net and loss functiony = tf.nn.softmax(tf.matmul(x, W) + b)
cross_entropy = -tf.reduce_sum(y_*tf.log(y))

进行模型训练:

 

# train the model
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
for i in range(1000):
batch = mnist.train.next_batch(50)
train_step.run(feed_dict={x: batch[0], y_: batch[1]})

使用训练好的模型对测试集进行预测:

 

# evaluate the model
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
54c038546fe64ed4e6eeff93dd771e2c401dd721

预测准确率为 0.9,虽然说也是一个很高的准确率了,但对于 mnist 这种标准数据集来说,这样的结果还有很大的提升空间。所以我们继续优化模型结构,为模型添加卷积结构。 搭建卷积神经网络模型

定义初始化模型权重函数:

 

# initilize the weight
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)

定义卷积和池化函数:

 

# convolutional and pooling
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')

搭建第一层卷积:

 

# the first convolution layer
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
x_image = tf.reshape(x, [-1,28,28,1])
h_pool1 = max_pool_2x2(h_conv1)

搭建第二层卷积:

 

# the second convolution layer
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

搭建全连接层:

 

# dense layer/full_connected layer
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

设置 dropout 防止过拟合:

 

# dropout to prevent overfitting
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

对输出层定义 softmax

 

# model output
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

训练模型并进行预测:

 

# model trainning and evaluating
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.initialize_all_variables())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
print("test accuracy %g"%accuracy.eval(feed_dict={

部分迭代过程和预测结果如下:

92a10674c95e924d4170263f92909f611641098b

经过添加两层卷积之后我们的模型预测准确率达到了 0.9931,模型训练的算是比较好了。


原文发布时间为:2018-09-20

本文作者:louwill

本文来自云栖社区合作伙伴“Python爱好者社区”,了解相关信息可以关注“Python爱好者社区”。

相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
海洋生物识别系统。以Python作为主要编程语言,通过TensorFlow搭建ResNet50卷积神经网络算法,通过对22种常见的海洋生物('蛤蜊', '珊瑚', '螃蟹', '海豚', '鳗鱼', '水母', '龙虾', '海蛞蝓', '章鱼', '水獭', '企鹅', '河豚', '魔鬼鱼', '海胆', '海马', '海豹', '鲨鱼', '虾', '鱿鱼', '海星', '海龟', '鲸鱼')数据集进行训练,得到一个识别精度较高的模型文件,然后使用Django开发一个Web网页平台操作界面,实现用户上传一张海洋生物图片识别其名称。
121 7
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
|
24天前
|
机器学习/深度学习 人工智能 算法
【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练
乐器识别系统。使用Python为主要编程语言,基于人工智能框架库TensorFlow搭建ResNet50卷积神经网络算法,通过对30种乐器('迪吉里杜管', '铃鼓', '木琴', '手风琴', '阿尔卑斯号角', '风笛', '班卓琴', '邦戈鼓', '卡萨巴', '响板', '单簧管', '古钢琴', '手风琴(六角形)', '鼓', '扬琴', '长笛', '刮瓜', '吉他', '口琴', '竖琴', '沙槌', '陶笛', '钢琴', '萨克斯管', '锡塔尔琴', '钢鼓', '长号', '小号', '大号', '小提琴')的图像数据集进行训练,得到一个训练精度较高的模型,并将其
35 0
【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练
|
21天前
|
机器学习/深度学习 人工智能 算法
【服装识别系统】图像识别+Python+人工智能+深度学习+算法模型+TensorFlow
服装识别系统,本系统作为图像识别方面的一个典型应用,使用Python作为主要编程语言,并通过TensorFlow搭建ResNet50卷积神经算法网络模型,通过对18种不同的服装('黑色连衣裙', '黑色衬衫', '黑色鞋子', '黑色短裤', '蓝色连衣裙', '蓝色衬衫', '蓝色鞋子', '蓝色短裤', '棕色鞋子', '棕色短裤', '绿色衬衫', '绿色鞋子', '绿色短裤', '红色连衣裙', '红色鞋子', '白色连衣裙', '白色鞋子', '白色短裤')数据集进行训练,最后得到一个识别精度较高的H5格式模型文件,然后基于Django搭建Web网页端可视化操作界面,实现用户在界面中
39 1
【服装识别系统】图像识别+Python+人工智能+深度学习+算法模型+TensorFlow
|
21天前
|
机器学习/深度学习 PyTorch TensorFlow
PAI DLC与其他深度学习框架如TensorFlow或PyTorch的异同
PAI DLC与其他深度学习框架如TensorFlow或PyTorch的异同
|
10天前
|
机器学习/深度学习 PyTorch TensorFlow
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
|
1天前
|
机器学习/深度学习 监控 自动驾驶
深度学习在图像识别中的应用与挑战
随着人工智能技术的飞速发展,深度学习已成为图像识别领域的核心技术。本文深入探讨了深度学习模型如卷积神经网络(CNN)和循环神经网络(RNN)在图像识别中的工作原理及应用案例,并分析了当前面临的挑战,如过拟合、数据偏差和计算资源限制等。文章旨在为读者提供深度学习在图像识别领域内的最新进展和未来趋势的全面视角。 【7月更文挑战第23天】
11 5
|
1天前
|
机器学习/深度学习 人工智能 监控
探索深度学习在图像识别中的应用与挑战
随着计算能力的飞速提升和大数据时代的来临,深度学习已经成为推动人工智能发展的核心动力。特别是在图像识别领域,深度学习技术通过模拟人脑处理信息的机制,已经取得了令人瞩目的成就。本文将深入探讨深度学习在图像识别中的关键技术、应用场景以及面临的主要挑战,为读者提供一篇内容丰富、数据支撑的技术分析文章。
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习在自然语言处理中的应用与挑战
本文深入探讨了深度学习技术在自然语言处理(NLP)领域的应用及其所面临的挑战。通过分析深度学习模型如循环神经网络(RNN)、长短期记忆网络(LSTM)和Transformer架构,本文揭示了这些模型如何促进语言理解、机器翻译、情感分析和文本生成等任务的进步。同时,文章也指出了数据偏差、模型可解释性不足以及资源消耗等关键挑战,并提出了未来研究的方向。
15 3
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习在自然语言处理中的应用与挑战
随着人工智能技术的飞速发展,深度学习已成为推动自然语言处理(NLP)领域进步的关键力量。本文旨在通过数据驱动的分析方法,探讨深度学习技术在NLP中的实际应用案例、所面临的挑战以及未来的发展方向。文章将重点分析深度学习模型如何提升语言理解、机器翻译和情感分析的性能,同时讨论数据依赖性、解释性不足和计算资源要求高等问题。通过对比传统方法与深度学习技术,本文揭示了深度学习在处理复杂语言模式方面的优势及其局限性,为未来研究提供指导。
|
1天前
|
机器学习/深度学习 人工智能 算法
深度学习在医疗影像分析中的应用与挑战
随着计算能力的提升和大数据时代的到来,深度学习技术已经渗透到医疗影像分析的各个领域。本文将探讨深度学习在医疗影像分析中的具体应用,包括疾病诊断、治疗规划及预后评估,并讨论当前面临的主要挑战,如数据隐私保护、模型可解释性以及算法泛化能力等。通过综合分析,旨在为读者提供深度学习技术在医疗领域应用的全面视角及其未来发展的可能性。