有了金刚钻,不惧瓷器活 | 在数据文件上轻松使用 SQL

简介:

SQL,在数据处理和分析领域基本上类似“普通话”的地位,几乎是一项必备的能力,但是要使用 SQL,又离不开关系数据库系统,也就是 RDBMS,这就好比普通话主要还是得在中国说才管用。当然,如果为了去英国美国,学个英语还算值,这就像学个 Python、Hadoop,出去找工作也算是个技能。但是如果要在一般的文本数据,或者 Excel 表格上作分析,就像是去个基里巴斯之类的小国家,为了能够愉快的购物,难道还要卷起舌头,从背单词、学语法开始?这种时候,恐怕第一时间想到的,就是上某宝,淘个好用的翻译器吧。

集算器,在这个问题上,可以说是一款居家旅行的必备神器了!

事实上,用 SQL 处理结构规整的文本或者 Excel 表格数据,除了是一种偷懒的想法外,也是一个很自然的思路。一个文件或者表格由若干数据行构成,而每行数据要么由确定的分隔符(空格、逗号、制表符……巴拉巴拉)分隔项目,要么就是规定了每个项目的固定长度。这种表示方式,和关系数据库中的表(Table)几乎是如出一辙,连变长字段和定长字段也都似乎有模有样。不同之处,是文件上没有主键、数据类型、是否可空这些概念。另外,就是文件之间关系的说明也没有像数据库那样明确,往往只是作为业务规则或者经验,存在于用户的脑袋里或者一些给人看的文件里面。

集算器的思路,也是如此,通过自动解析结构化文本或者 Excel 文件,将文件映射为 “表”,并在此基础上,充分支持 SQL 的语法和功能。

好了,闲言少叙,进入正题。我们以两个有关联的文件作为样例,看看如何在不“安装数据库 -> 建数据库表 -> 导入数据”的情况下,轻轻松松地进行查询分析:

首先,看一下样例数据,一共是两个文件:员工信息(employee.txt)和州的基本信息(state.xlsx),注意!这里我们使用了两种文件,一个是格式化的 TXT 文本,另一个是 Excel 电子表格,也就是说,集算器可以同时连接不同类型的数据源,神不神奇?意不意外?

更神奇的是,集算器可以根据文件后缀,自动识别和读取四种文件类型!分别是:文本(txt)、Excel(xls、xlsx)和 csv 文件。

下面两张图分别是员工信息和州信息的样本数据,两个文件之间通过员工信息中的 STATE 项(第 5 列)和州信息中的 STATEID 项(第 1 列)进行关联。

员工信息数据样本:
1

州信息数据样本:
2

好了,马上开始干活。首先,最简单的单表查询,看看员工中薪酬大于 10000(SALARY>10000)的女(GENDER=’F’)员工,输出结果按照员工编号(EID)排序,集算器代码如下:
3

没错,就这么简单,就这么熟悉!第 1 步,连接数据库……呃,这里没有指定参数,所以直接连接的就是文件系统,第 2 步,使用 query() 函数执行 SQL 查询,而这里的 SQL,除了把 from 后的表名,换成了文件名,别的和数据库查询一模一样!查询结果如下:
4

注意,windows 环境下,集算器里的文件路径用斜杠“/”而不是反斜杠“”,这和 Java 语言一致。
好吧,这也太像了,下面我们来个不太像的,查询不早于 1980 年 01 月 01 日出生的,薪酬大于 10000 的员工:
5

很简单,使用 $()相当于 connect() 函数,后面直接写 SQL 即可。事实上,括号中可以写不同的数据源名称,从而同时连接多个数据源。

另外,这个例子使用了 SQL 中的字符串转日期的函数 date()。
接下来,是 SQL 数据库有别于单个文件的关键,关联查询。对于薪酬大于 10000 的女员工,还想再看看她们都在哪个州:
6

嗯,用文件名代替表名确实有点长,所以我们用了 SQL 中别名的用法,结果如下:
7

除了使用别名代替文件的绝对路径,对于特别长的路径或者文件很多的情况,为了方便书写和清晰阅读,还可以在集算器 - 菜单 - 工具 - 选项中配置主目录,这样就可以在 SQL 中直接使用文件名或者相对路径了。这是不是更像指定了一个数据库,直接访问其中的表了?
配置方法如下图所示:
8

配置了主目录后的查询是这个样子,查询工资总额大于 100000 的部门对应的人数和工资总额:
9

查询结果如下:
10

下面,进入一些细节内容:

1)集算器支持逻辑运算 and、or 和 not,例如:查询员工姓 Smith 或者 Robinson,并且是 Sales 部门之外的男员工:
11

2)集算器中,支持用 is null 来判断是否为空,用 is not null 判断非空,例如:找出 surname 为空的员工:
12

同时支持用 coalesce 函数处理空值,例如:员工 surname 字段为空时在结果中显示为“UNKNOWN”:
13

查询结果为:
14

注意:集算器中的字段别名,不能和文件中的字段名重复。

3)集算器支持 Case when,例如:性别字段为“F”的要显示为“female”,为“M”的要显示为“male”。
16

查询结果为:
17

4)集算器支持 like 关键字进行模糊查询,例如:在员工中,查询 surname 字段包含“son”的员工。
18

其中的“%”为通配符,表示一个或者多个字符。另外,“_”表示一个字符。如果要查询以“son”结尾,并且前面有三个字符的情况,可以写成 surname like ‘___son’;“[WJ]”表示包含“W”和“J”的字符列表。surname like ‘[WJ]%’表示 surname 是以“W”或者“J”开头。surname like ‘[!WJ]%’表示 surname 不是以“W”或者“J”开头。

5)集算器支持通过 In 关键字在多个值中查询数据。例如:查询“Finance、Sales、R&D”三个部门的员工。
19

6)集算器支持通过 with T as (x) 的方式定义一个外部表。例如:employee.txt 中的 state 字段和另一个数据源 demo 数据库的 state 表的 stateid 字段左连接,查出每个员工所在州的名字和人口:
在这个 SQL 中:

with t2 as  (connect(”demo”).query(”select from states”)) 定义了一个外部表 t2,连接 demo 数据源(实际上是集算器自带的 hsql 演示数据库),用 query 函数执行 SQL“select from states”。(其中,”是在字符串中使用双引号的转义写法)

后边的“select t1.eid … left join t2 on t1.STATE=t2.STATEID”则利用定义好的 t2 和 employee.txt 左连接,查出每个员工所在州的名字和人口。
20

这个查询是典型的数据库和文本文件的联合查询。实际上,with 关键字可以定义各种数据源查出的数据,从而非常灵活的实现跨异构数据源的联合查询。

7)集算器支持通过 into to 将查询结果输出的文件中。例如:查询工资总额大于 100000 的部门对应的人数和工资总额,结果写入 deptResult.xlsx。这里,新的文件就类似关系数据数据库里的一个新表。
21

说了这么多,可以看出,通过集算器,我们就能够基本实现在结构化的文本数据(txt、csv 等)和 Excel 文件(xls、xlsx)上轻松、直接地使用 SQL。

当然,集算器并不是完全“平移”复制了 SQL 的能力,对于 SQL 中的子查询,集算器目前并不能直接支持,而是会以更加灵活、方便、直观的分步式计算方式加以解决。同时,对于有些特殊的 join 计算,集算器和传统数据库相比会慢一点。

最后,我们再来看看通过集算器进行 SQL 计算,还能额外获得哪些福利:

1)根据输入参数动态计算:

在进行数据查询时,常常需要根据不同的条件进行计算,也就是我们说的动态执行。这时,我们可以定义“网格参数”,为可能发生变化的条件预留位置。例如:想要找出公司里较高薪水的年轻员工有哪些,但是年龄段和薪酬起始线还不确定,我们就可以在集算器 IDE 的菜单“程序 / 网格参数”中,定义两个参数:birthday 和 salary:
22

然后在查询语句中用占位符“?”写出 SQL,并按顺序指定对应的网格参数名作为输入:
23

如果在定义网格参数的时候指定了具体的数值,并且没有勾选“每次运行前设置参数”那么运行脚步会直接指定的数值。如果勾选了“每次运行前设置参数”,那么每次运行脚本的时候,都会弹出“设置参数值”窗口。这样,我们就可以随时输入我们需要的参数值了,相应地,查询结果也会随之改变了:
24e

2)在命令行中使用 SQL 查询文件

在 windows 或者 linux 系统中,我们还可以通过命令行中调用编写好的集算器脚本,直接对文件数据进行查询。如果结合操作系统的定时任务机制,就可以在指定时间完成批量数据计算了。

我们先看一个不返回结果集的例子。定期为财务部门提供工资总额大于 100000 的部门对应的人数和工资总额,结果写入 deptResult.xlsx(然后可以通过邮件或其他方式发送给相关人员)。

首先,编写集算器脚本,并保存为 deptResult.dfx。
25

然后,在命令行执行 esprocx.exe 命令,(在集算器安装目录的 bin 文件夹中),执行结果:

| C:Program FilesraqsoftesProcbin>esprocx.exe deptResult.dfxcreate deptResult.xlsx successfully! |

其中,第二行是 Output 函数输出的提示信息,可以用于监控程序执行和调试。

我们再看一个返回结果集的例子,同样的查询需求,但是不要求输出到文件中,而是直接查看结果。这次我们把编写的集算器脚本换个名字存为 deptQuery.dfx。
26

在命令行中的执行并查看结果:
27

更进一步,集算器也可以做到直接在命令行写完整的 SQL 语句,直接从文件中返回需要查询的结果。是不是和数据库命令行查询工具一样方便?

先定义一个参数 sql,用来传入需要查询的 SQL 语句。
28

然后编写如下集算器脚本,保存为 query.dfx,
29

执行命令时,在命令行中直接写 SQL 语句,结果如下:
30

结合前面说的根据参数动态计算的方法,也可以在使用命令行计算时实现一定的交互。还是以前面说过的查询公司里薪酬较高的年轻员工为例:

在集算器 IDE 菜单“程序 / 网格参数”中,定义两个参数:birthday 和 salary。
31

编写如下集算器脚本,保存为 empQueryParam.dfx,
32

执行命令时,按照顺序为两个参数提供数值,结果如下:
33e

至此,我们已经充分了解了利用集算器,就可以用 SQL 这把“金刚钻”来揽数据文件这些“瓷器活儿”了。其实,这个故事里,集算器才是真正的“金刚钻”!除了本文描述的将数据文件直接作为“表”来处理的方式,集算器真正有力的武器库远不止此。通过这款轻量级的数据分析工具,无论是数据库还是文件系统中的数据,都可以被轻松处理,快刀斩乱麻!

作者:terminator
链接:http://c.raqsoft.com.cn/article/1533893239292
来源:乾学院
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

相关文章
|
2月前
|
SQL 存储 API
Flink实践:通过Flink SQL进行SFTP文件的读写操作
虽然 Apache Flink 与 SFTP 之间的直接交互存在一定的限制,但通过一些创造性的方法和技术,我们仍然可以有效地实现对 SFTP 文件的读写操作。这既展现了 Flink 在处理复杂数据场景中的强大能力,也体现了软件工程中常见的问题解决思路——即通过现有工具和一定的间接方法来克服技术障碍。通过这种方式,Flink SQL 成为了处理各种数据源,包括 SFTP 文件,在内的强大工具。
165 15
|
1月前
|
SQL 关系型数据库 MySQL
数据库导入SQL文件:全面解析与操作指南
在数据库管理中,将SQL文件导入数据库是一个常见且重要的操作。无论是迁移数据、恢复备份,还是测试和开发环境搭建,掌握如何正确导入SQL文件都至关重要。本文将详细介绍数据库导入SQL文件的全过程,包括准备工作、操作步骤以及常见问题解决方案,旨在为数据库管理员和开发者提供全面的操作指南。一、准备工作在导
235 0
|
14天前
|
SQL 存储 缓存
SQL Server 数据太多如何优化
11种优化方案供你参考,优化 SQL Server 数据库性能得从多个方面着手,包括硬件配置、数据库结构、查询优化、索引管理、分区分表、并行处理等。通过合理的索引、查询优化、数据分区等技术,可以在数据量增大时保持较好的性能。同时,定期进行数据库维护和清理,保证数据库高效运行。
|
1月前
|
SQL 数据库
DBeaver执行sql文件
本文介绍了DBeaver这款支持多种数据库的通用数据库管理工具和SQL客户端,它具备查看数据库结构、执行SQL查询和脚本、浏览和导出数据等功能。
84 1
DBeaver执行sql文件
|
1月前
|
SQL 关系型数据库 MySQL
|
30天前
|
SQL 移动开发 Oracle
SQL语句实现查询连续六天数据的方法与技巧
在数据库查询中,有时需要筛选出符合特定时间连续性条件的数据记录
|
1月前
|
SQL 数据库
为什么 SQL 日志文件很大,我应该如何处理?
为什么 SQL 日志文件很大,我应该如何处理?
|
1月前
|
SQL 存储 关系型数据库
添加数据到数据库的SQL语句详解与实践技巧
在数据库管理中,添加数据是一个基本操作,它涉及到向表中插入新的记录
|
1月前
|
SQL 数据挖掘 数据库
SQL查询每秒的数据:技巧、方法与性能优化
id="">SQL查询功能详解 SQL(Structured Query Language,结构化查询语言)是一种专门用于与数据库进行沟通和操作的语言
|
1月前
|
SQL 监控 数据处理
SQL数据库数据修改操作详解
数据库是现代信息系统的重要组成部分,其中SQL(StructuredQueryLanguage)是管理和处理数据库的重要工具之一。在日常的业务运营过程中,数据的准确性和及时性对企业来说至关重要,这就需要掌握如何在数据库中正确地进行数据修改操作。本文将详细介绍在SQL数据库中如何修改数据,帮助读者更好
198 4