Java并发指南10:Java 读写锁 ReentrantReadWriteLock 源码分析

简介: 这位大侠,这是我的公众号:程序员江湖。 分享程序员面试与技术的那些事。 干货满满,关注就送。 Java 读写锁 ReentrantReadWriteLock 源码分析转自:https://www.javadoop.com/post/reentrant-read-write-lock#toc5本文内容:读写锁 ReentrantReadWriteLock 的源码分析,基于 Java7/Java8。

这位大侠,这是我的公众号:程序员江湖。 
分享程序员面试与技术的那些事。 干货满满,关注就送。 
这里写图片描述

Java 读写锁 ReentrantReadWriteLock 源码分析

转自:https://www.javadoop.com/post/reentrant-read-write-lock#toc5

本文内容:读写锁 ReentrantReadWriteLock 的源码分析,基于 Java7/Java8。

阅读建议:虽然我这里会介绍一些 AQS 的知识,不过如果你完全不了解 AQS,看本文就有点吃力了。

目录

使用示例

下面这个例子非常实用,我是 javadoc 的搬运工:

// 这是一个关于缓存操作的故事
class CachedData {
    Object data;
    volatile boolean cacheValid;
    // 读写锁实例
    final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();

    void processCachedData() {
        // 获取读锁
        rwl.readLock().lock();
        if (!cacheValid) { // 如果缓存过期了,或者为 null
            // 释放掉读锁,然后获取写锁 (后面会看到,没释放掉读锁就获取写锁,会发生死锁情况)
            rwl.readLock().unlock();
            rwl.writeLock().lock();

            try {
                if (!cacheValid) { // 重新判断,因为在等待写锁的过程中,可能前面有其他写线程执行过了
                    data = ...
                    cacheValid = true;
                }
                // 获取读锁 (持有写锁的情况下,是允许获取读锁的,称为 “锁降级”,反之不行。)
                rwl.readLock().lock();
            } finally {
                // 释放写锁,此时还剩一个读锁
                rwl.writeLock().unlock(); // Unlock write, still hold read
            }
        }

        try {
            use(data);
        } finally {
            // 释放读锁
            rwl.readLock().unlock();
        }
    }
}

ReentrantReadWriteLock 分为读锁和写锁两个实例,读锁是共享锁,可被多个线程同时使用,写锁是独占锁。持有写锁的线程可以继续获取读锁,反之不行。

ReentrantReadWriteLock 总览

这一节比较重要,我们要先看清楚 ReentrantReadWriteLock 的大框架,然后再到源码细节。

首先,我们来看下 ReentrantReadWriteLock 的结构,它有好些嵌套类:

11

大家先仔细看看这张图中的信息。然后我们把 ReadLock 和 WriteLock 的代码提出来一起看,清晰一些:

12

很清楚了,ReadLock 和 WriteLock 中的方法都是通过 Sync 这个类来实现的。Sync 是 AQS 的子类,然后再派生了公平模式和不公平模式。

从它们调用的 Sync 方法,我们可以看到: ReadLock 使用了共享模式,WriteLock 使用了独占模式

等等,同一个 AQS 实例怎么可以同时使用共享模式和独占模式???

这里给大家回顾下 AQS,我们横向对比下 AQS 的共享模式和独占模式:

13

AQS 的精髓在于内部的属性 state

  1. 对于独占模式来说,通常就是 0 代表可获取锁,1 代表锁被别人获取了,重入例外
  2. 而共享模式下,每个线程都可以对 state 进行加减操作

也就是说,独占模式和共享模式对于 state 的操作完全不一样,那读写锁 ReentrantReadWriteLock 中是怎么使用 state 的呢?答案是将 state 这个 32 位的 int 值分为高 16 位和低 16位,分别用于共享模式和独占模式

源码分析

有了前面的概念,大家心里应该都有数了吧,下面就不再那么啰嗦了,直接代码分析。

源代码加注释 1500 行,并不算难,我们要看的代码量不大。如果你前面一节都理解了,那么直接从头开始一行一行往下看就是了,还是比较简单的。

ReentrantReadWriteLock 的前面几行很简单,我们往下滑到 Sync 类,先来看下它的所有的属性:

abstract static class Sync extends AbstractQueuedSynchronizer {
    // 下面这块说的就是将 state 一分为二,高 16 位用于共享模式,低16位用于独占模式
    static final int SHARED_SHIFT   = 16;
    static final int SHARED_UNIT    = (1 << SHARED_SHIFT);
    static final int MAX_COUNT      = (1 << SHARED_SHIFT) - 1;
    static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
    // 取 c 的高 16 位值,代表读锁的获取次数(包括重入)
    static int sharedCount(int c)    { return c >>> SHARED_SHIFT; }
    // 取 c 的低 16 位值,代表写锁的重入次数,因为写锁是独占模式
    static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }

    // 这个嵌套类的实例用来记录每个线程持有的读锁数量(读锁重入)
    static final class HoldCounter {
        // 持有的读锁数
        int count = 0;
        // 线程 id
        final long tid = getThreadId(Thread.currentThread());
    }

    // ThreadLocal 的子类
    static final class ThreadLocalHoldCounter
        extends ThreadLocal<HoldCounter> {
        public HoldCounter initialValue() {
            return new HoldCounter();
        }
    }
    /**
      * 组合使用上面两个类,用一个 ThreadLocal 来记录当前线程持有的读锁数量
      */ 
    private transient ThreadLocalHoldCounter readHolds;

    // 用于缓存,记录"最后一个获取读锁的线程"的读锁重入次数,
    // 所以不管哪个线程获取到读锁后,就把这个值占为已用,这样就不用到 ThreadLocal 中查询 map 了
    // 算不上理论的依据:通常读锁的获取很快就会伴随着释放,
    //   显然,在 获取->释放 读锁这段时间,如果没有其他线程获取读锁的话,此缓存就能帮助提高性能
    private transient HoldCounter cachedHoldCounter;

    // 第一个获取读锁的线程(并且其未释放读锁),以及它持有的读锁数量
    private transient Thread firstReader = null;
    private transient int firstReaderHoldCount;

    Sync() {
        // 初始化 readHolds 这个 ThreadLocal 属性
        readHolds = new ThreadLocalHoldCounter();
        // 为了保证 readHolds 的内存可见性
        setState(getState()); // ensures visibility of readHolds
    }
    ...
}
  1. state 的高 16 位代表读锁的获取次数,包括重入次数,获取到读锁一次加 1,释放掉读锁一次减 1
  2. state 的低 16 位代表写锁的获取次数,因为写锁是独占锁,同时只能被一个线程获得,所以它代表重入次数
  3. 每个线程都需要维护自己的 HoldCounter,记录该线程获取的读锁次数,这样才能知道到底是不是读锁重入,用 ThreadLocal 属性 readHolds 维护
  4. cachedHoldCounter 有什么用?其实没什么用,但能提示性能。将最后一次获取读锁的线程的 HoldCounter 缓存到这里,这样比使用 ThreadLocal 性能要好一些,因为 ThreadLocal 内部是基于 map 来查询的。但是 cachedHoldCounter 这一个属性毕竟只能缓存一个线程,所以它要起提升性能作用的依据就是:通常读锁的获取紧随着就是该读锁的释放。我这里可能表达不太好,但是大家应该是懂的吧。
  5. firstReader 和 firstReaderHoldCount 有什么用?其实也没什么用,但是它也能提示性能。将"第一个"获取读锁的线程记录在 firstReader 属性中,这里的第一个不是全局的概念,等这个 firstReader 当前代表的线程释放掉读锁以后,会有后来的线程占用这个属性的。firstReader 和 firstReaderHoldCount 使得在读锁不产生竞争的情况下,记录读锁重入次数非常方便快速
  6. 如果一个线程使用了 firstReader,那么它就不需要占用 cachedHoldCounter
  7. 个人认为,读写锁源码中最让初学者头疼的就是这几个用于提升性能的属性了,使得大家看得云里雾里的。主要是因为 ThreadLocal 内部是通过一个 ThreadLocalMap 来操作的,会增加检索时间。而很多场景下,执行 unlock 的线程往往就是刚刚最后一次执行 lock 的线程,中间可能没有其他线程进行 lock。还有就是很多不怎么会发生读锁竞争的场景。

上面说了这么多,是希望能帮大家降低后面阅读源码的压力,大家也可以先看看后面的,然后再慢慢体会。

前面我们好像都只说读锁,完全没提到写锁,主要是因为写锁真的是简单很多,我也特地将写锁的源码放到了后面,我们先啃下最难的读锁先。

读锁获取

下面我就不一行一行按源码顺序说了,我们按照使用来说。

我们来看下读锁 ReadLock 的 lock 流程:

// ReadLock
public void lock() {
    sync.acquireShared(1);
}
// AQS
public final void acquireShared(int arg) {
    if (tryAcquireShared(arg) < 0)
        doAcquireShared(arg);
}

然后我们就会进到 Sync 类的 tryAcquireShared 方法:

在 AQS 中,如果 tryAcquireShared(arg) 方法返回值小于 0 代表没有获取到共享锁(读锁),大于 0 代表获取到

回顾 AQS 共享模式:tryAcquireShared 方法不仅仅在 acquireShared 的最开始被使用,这里是 try,也就可能会失败,如果失败的话,执行后面的 doAcquireShared,进入到阻塞队列,然后等待前驱节点唤醒。唤醒以后,还是会调用 tryAcquireShared 进行获取共享锁的。当然,唤醒以后再 try 是很容易获得锁的,因为这个节点已经排了很久的队了,组织是会照顾它的。

所以,你在看下面这段代码的时候,要想象到两种获取读锁的场景,一种是新来的,一种是排队排到它的。

protected final int tryAcquireShared(int unused) {

    Thread current = Thread.currentThread();
    int c = getState();

    // exclusiveCount(c) 不等于 0,说明有线程持有写锁,
    //    而且不是当前线程持有写锁,那么当前线程获取读锁失败
    //         (另,如果持有写锁的是当前线程,是可以继续获取读锁的)
    if (exclusiveCount(c) != 0 &&
        getExclusiveOwnerThread() != current)
        return -1;

    // 读锁的获取次数
    int r = sharedCount(c);

    // 读锁获取是否需要被阻塞,稍后细说。为了进去下面的分支,假设这里不阻塞就好了
    if (!readerShouldBlock() &&
        // 判断是否会溢出 (2^16-1,没那么容易溢出的)
        r < MAX_COUNT &&
        // 下面这行 CAS 是将 state 属性的高 16 位加 1,低 16 位不变,如果成功就代表获取到了读锁
        compareAndSetState(c, c + SHARED_UNIT)) {

        // =======================
        //   进到这里就是获取到了读锁
        // =======================

        if (r == 0) {
            // r == 0 说明此线程是第一个获取读锁的,或者说在它前面获取读锁的都走光光了,它也算是第一个吧
            //  记录 firstReader 为当前线程,及其持有的读锁数量:1
            firstReader = current;
            firstReaderHoldCount = 1;
        } else if (firstReader == current) {
            // 进来这里,说明是 firstReader 重入获取读锁(这非常简单,count 加 1 结束)
            firstReaderHoldCount++;
        } else {
            // 前面我们说了 cachedHoldCounter 用于缓存最后一个获取读锁的线程
            // 如果 cachedHoldCounter 缓存的不是当前线程,设置为缓存当前线程的 HoldCounter
            HoldCounter rh = cachedHoldCounter;
            if (rh == null || rh.tid != getThreadId(current))
                cachedHoldCounter = rh = readHolds.get();
            else if (rh.count == 0) 
                // 到这里,那么就是 cachedHoldCounter 缓存的是当前线程,但是 count 为 0,
                // 大家可以思考一下:这里为什么要 set ThreadLocal 呢?(当然,答案肯定不在这块代码中)
                //   既然 cachedHoldCounter 缓存的是当前线程,
                //   当前线程肯定调用过 readHolds.get() 进行初始化 ThreadLocal
                readHolds.set(rh);

            // count 加 1
            rh.count++;
        }
        // return 大于 0 的数,代表获取到了共享锁
        return 1;
    }
    // 往下看
    return fullTryAcquireShared(current);
}

上面的代码中,要进入 if 分支,需要满足:readerShouldBlock() 返回 false,并且 CAS 要成功(我们先不要纠结 MAX_COUNT 溢出)。

那我们反向推,怎么样进入到最后的 fullTryAcquireShared:

  • readerShouldBlock() 返回 true,2 种情况:

    • 在 FairSync 中说的是 hasQueuedPredecessors(),即阻塞队列中有其他元素在等待锁。

      也就是说,公平模式下,有人在排队呢,你新来的不能直接获取锁

    • 在 NonFairSync 中说的是 apparentlyFirstQueuedIsExclusive(),即判断阻塞队列中 head 的第一个后继节点是否是来获取写锁的,如果是的话,让这个写锁先来,避免写锁饥饿。

      作者给写锁定义了更高的优先级,所以如果碰上获取写锁的线程马上就要获取到锁了,获取读锁的线程不应该和它抢。

      如果 head.next 不是来获取写锁的,那么可以随便抢,因为是非公平模式,大家比比 CAS 速度

  • compareAndSetState(c, c + SHARED_UNIT) 这里 CAS 失败,存在竞争。可能是和另一个读锁获取竞争,当然也可能是和另一个写锁获取操作竞争。

然后就会来到 fullTryAcquireShared 中再次尝试:

/**
 * 1. 刚刚我们说了可能是因为 CAS 失败,如果就此返回,那么就要进入到阻塞队列了,
 *    想想有点不甘心,因为都已经满足了 !readerShouldBlock(),也就是说本来可以不用到阻塞队列的,
 *    所以进到这个方法其实是增加 CAS 成功的机会
 * 2. 在 NonFairSync 情况下,虽然 head.next 是获取写锁的,我知道它等待很久了,我没想和它抢,
 *    可是如果我是来重入读锁的,那么只能表示对不起了
 */
final int fullTryAcquireShared(Thread current) {
    HoldCounter rh = null;
    // 别忘了这外层有个 for 循环
    for (;;) {
        int c = getState();
        // 如果其他线程持有了写锁,自然这次是获取不到读锁了,乖乖到阻塞队列排队吧
        if (exclusiveCount(c) != 0) {
            if (getExclusiveOwnerThread() != current)
                return -1;
            // else we hold the exclusive lock; blocking here
            // would cause deadlock.
        } else if (readerShouldBlock()) {
            /**
              * 进来这里,说明:
              *  1. exclusiveCount(c) == 0:写锁没有被占用
              *  2. readerShouldBlock() 为 true,说明阻塞队列中有其他线程在等待
              *
              * 既然 should block,那进来这里是干什么的呢?
              * 答案:是进来处理读锁重入的!
              * 
              */

            // firstReader 线程重入读锁,直接到下面的 CAS
            if (firstReader == current) {
                // assert firstReaderHoldCount > 0;
            } else {
                if (rh == null) {
                    rh = cachedHoldCounter;
                    if (rh == null || rh.tid != getThreadId(current)) {
                        // cachedHoldCounter 缓存的不是当前线程
                        // 那么到 ThreadLocal 中获取当前线程的 HoldCounter
                        // 如果当前线程从来没有初始化过 ThreadLocal 中的值,get() 会执行初始化
                        rh = readHolds.get();
                        // 如果发现 count == 0,也就是说,纯属上一行代码初始化的,那么执行 remove
                        // 然后往下两三行,乖乖排队去
                        if (rh.count == 0)
                            readHolds.remove();
                    }
                }
                if (rh.count == 0)
                    // 排队去。
                    return -1;
            }
            /**
              * 这块代码我看了蛮久才把握好它是干嘛的,原来只需要知道,它是处理重入的就可以了。
              * 就是为了确保读锁重入操作能成功,而不是被塞到阻塞队列中等待
              *
              * 另一个信息就是,这里对于 ThreadLocal 变量 readHolds 的处理:
              *    如果 get() 后发现 count == 0,居然会做 remove() 操作,
              *    这行代码对于理解其他代码是有帮助的
              */
        }

        if (sharedCount(c) == MAX_COUNT)
            throw new Error("Maximum lock count exceeded");

        if (compareAndSetState(c, c + SHARED_UNIT)) {
            // 这里 CAS 成功,那么就意味着成功获取读锁了
            // 下面需要做的是设置 firstReader 或 cachedHoldCounter

            if (sharedCount(c) == 0) {
                // 如果发现 sharedCount(c) 等于 0,就将当前线程设置为 firstReader
                firstReader = current;
                firstReaderHoldCount = 1;
            } else if (firstReader == current) {
                firstReaderHoldCount++;
            } else {
                // 下面这几行,就是将 cachedHoldCounter 设置为当前线程
                if (rh == null)
                    rh = cachedHoldCounter;
                if (rh == null || rh.tid != getThreadId(current))
                    rh = readHolds.get();
                else if (rh.count == 0)
                    readHolds.set(rh);
                rh.count++;
                cachedHoldCounter = rh;
            }
            // 返回大于 0 的数,代表获取到了读锁
            return 1;
        }
    }
}

firstReader 是每次将读锁获取次数从 0 变为 1 的那个线程。

能缓存到 firstReader 中就不要缓存到 cachedHoldCounter 中。

上面的源码分析应该说得非常详细了,如果到这里你不太能看懂上面的有些地方的注释,那么可以先往后看,然后再多看几遍。

读锁释放

下面我们看看读锁释放的流程:

// ReadLock
public void unlock() {
    sync.releaseShared(1);
}
// Sync
public final boolean releaseShared(int arg) {
    if (tryReleaseShared(arg)) {
        doReleaseShared(); // 这句代码其实唤醒 获取写锁的线程,往下看就知道了
        return true;
    }
    return false;
}

// Sync
protected final boolean tryReleaseShared(int unused) {
    Thread current = Thread.currentThread();
    if (firstReader == current) {
        if (firstReaderHoldCount == 1)
            // 如果等于 1,那么这次解锁后就不再持有锁了,把 firstReader 置为 null,给后来的线程用
            // 为什么不顺便设置 firstReaderHoldCount = 0?因为没必要,其他线程使用的时候自己会设值
            firstReader = null;
        else
            firstReaderHoldCount--;
    } else {
        // 判断 cachedHoldCounter 是否缓存的是当前线程,不是的话要到 ThreadLocal 中取
        HoldCounter rh = cachedHoldCounter;
        if (rh == null || rh.tid != getThreadId(current))
            rh = readHolds.get();

        int count = rh.count;
        if (count <= 1) {

            // 这一步将 ThreadLocal remove 掉,防止内存泄漏。因为已经不再持有读锁了
            readHolds.remove();

            if (count <= 0)
                // 就是那种,lock() 一次,unlock() 好几次的逗比
                throw unmatchedUnlockException();
        }
        // count 减 1
        --rh.count;
    }

    for (;;) {
        int c = getState();
        // nextc 是 state 高 16 位减 1 后的值
        int nextc = c - SHARED_UNIT;
        if (compareAndSetState(c, nextc))
            // 如果 nextc == 0,那就是 state 全部 32 位都为 0,也就是读锁和写锁都空了
            // 此时这里返回 true 的话,其实是帮助唤醒后继节点中的获取写锁的线程
            return nextc == 0;
    }
}

读锁释放的过程还是比较简单的,主要就是将 hold count 减 1,如果减到 0 的话,还要将 ThreadLocal 中的 remove 掉。

然后是在 for 循环中将 state 的高 16 位减 1,如果发现读锁和写锁都释放光了,那么唤醒后继的获取写锁的线程。

写锁获取

  1. 写锁是独占锁。
  2. 如果有读锁被占用,写锁获取是要进入到阻塞队列中等待的。
// WriteLock
public void lock() {
    sync.acquire(1);
}
// AQS
public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
        // 如果 tryAcquire 失败,那么进入到阻塞队列等待
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}

// Sync
protected final boolean tryAcquire(int acquires) {

    Thread current = Thread.currentThread();
    int c = getState();
    int w = exclusiveCount(c);
    if (c != 0) {

        // 看下这里返回 false 的情况:
        //   c != 0 && w == 0: 写锁可用,但是有线程持有读锁(也可能是自己持有)
        //   c != 0 && w !=0 && current != getExclusiveOwnerThread(): 其他线程持有写锁
        //   也就是说,只要有读锁或写锁被占用,这次就不能获取到写锁
        if (w == 0 || current != getExclusiveOwnerThread())
            return false;

        if (w + exclusiveCount(acquires) > MAX_COUNT)
            throw new Error("Maximum lock count exceeded");

        // 这里不需要 CAS,仔细看就知道了,能到这里的,只可能是写锁重入,不然在上面的 if 就拦截了
        setState(c + acquires);
        return true;
    }

    // 如果写锁获取不需要 block,那么进行 CAS,成功就代表获取到了写锁
    if (writerShouldBlock() ||
        !compareAndSetState(c, c + acquires))
        return false;
    setExclusiveOwnerThread(current);
    return true;
}

下面看一眼 writerShouldBlock() 的判定,然后你再回去看一篇写锁获取过程。

static final class NonfairSync extends Sync {
    // 如果是非公平模式,那么 lock 的时候就可以直接用 CAS 去抢锁,抢不到再排队
    final boolean writerShouldBlock() {
        return false; // writers can always barge
    }
    ...
}
static final class FairSync extends Sync {
    final boolean writerShouldBlock() {
        // 如果是公平模式,那么如果阻塞队列有线程等待的话,就乖乖去排队
        return hasQueuedPredecessors();
    }
    ...
}

写锁释放

// WriteLock
public void unlock() {
    sync.release(1);
}

// AQS
public final boolean release(int arg) {
    // 1. 释放锁
    if (tryRelease(arg)) {
        // 2. 如果独占锁释放"完全",唤醒后继节点
        Node h = head;
        if (h != null && h.waitStatus != 0)
            unparkSuccessor(h);
        return true;
    }
    return false;
}

// Sync 
// 释放锁,是线程安全的,因为写锁是独占锁,具有排他性
// 实现很简单,state 减 1 就是了
protected final boolean tryRelease(int releases) {
    if (!isHeldExclusively())
        throw new IllegalMonitorStateException();
    int nextc = getState() - releases;
    boolean free = exclusiveCount(nextc) == 0;
    if (free)
        setExclusiveOwnerThread(null);
    setState(nextc);
    // 如果 exclusiveCount(nextc) == 0,也就是说包括重入的,所有的写锁都释放了,
    // 那么返回 true,这样会进行唤醒后继节点的操作。
    return free;
}

看到这里,是不是发现写锁相对于读锁来说要简单很多。

锁降级

Doug Lea 没有说写锁更高级,如果有线程持有读锁,那么写锁获取也需要等待。

不过从源码中也可以看出,确实会给写锁一些特殊照顾,如非公平模式下,为了提高吞吐量,lock 的时候会先 CAS 竞争一下,能成功就代表读锁获取成功了,但是如果发现 head.next 是获取写锁的线程,就不会去做 CAS 操作。

Doug Lea 将持有写锁的线程,去获取读锁的过程称为锁降级(Lock downgrading)。这样,此线程就既持有写锁又持有读锁。

但是,锁升级是不可以的。线程持有读锁的话,在没释放的情况下不能去获取写锁,因为会发生死锁

回去看下写锁获取的源码:

protected final boolean tryAcquire(int acquires) {

    Thread current = Thread.currentThread();
    int c = getState();
    int w = exclusiveCount(c);
    if (c != 0) {
        // 看下这里返回 false 的情况:
        //   c != 0 && w == 0: 写锁可用,但是有线程持有读锁(也可能是自己持有)
        //   c != 0 && w !=0 && current != getExclusiveOwnerThread(): 其他线程持有写锁
        //   也就是说,只要有读锁或写锁被占用,这次就不能获取到写锁
        if (w == 0 || current != getExclusiveOwnerThread())
            return false;
        ...
    }
    ...
}

仔细想想,如果线程 a 先获取了读锁,然后获取写锁,那么线程 a 就到阻塞队列休眠了,自己把自己弄休眠了,而且可能之后就没人去唤醒它了。

总结

14

(全文完)

相关文章
|
25天前
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
1月前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
1月前
|
Java 数据库连接 数据库
如何构建高效稳定的Java数据库连接池,涵盖连接池配置、并发控制和异常处理等方面
本文介绍了如何构建高效稳定的Java数据库连接池,涵盖连接池配置、并发控制和异常处理等方面。通过合理配置初始连接数、最大连接数和空闲连接超时时间,确保系统性能和稳定性。文章还探讨了同步阻塞、异步回调和信号量等并发控制策略,并提供了异常处理的最佳实践。最后,给出了一个简单的连接池示例代码,并推荐使用成熟的连接池框架(如HikariCP、C3P0)以简化开发。
51 2
|
2月前
|
Java
【编程进阶知识】揭秘Java多线程:并发与顺序编程的奥秘
本文介绍了Java多线程编程的基础,通过对比顺序执行和并发执行的方式,展示了如何使用`run`方法和`start`方法来控制线程的执行模式。文章通过具体示例详细解析了两者的异同及应用场景,帮助读者更好地理解和运用多线程技术。
32 1
|
2月前
|
Java
Java基础之 JDK8 HashMap 源码分析(中间写出与JDK7的区别)
这篇文章详细分析了Java中HashMap的源码,包括JDK8与JDK7的区别、构造函数、put和get方法的实现,以及位运算法的应用,并讨论了JDK8中的优化,如链表转红黑树的阈值和扩容机制。
32 1
|
2月前
|
XML JavaScript Java
java与XML文件的读写
java与XML文件的读写
28 3
|
3月前
|
Java API 容器
JAVA并发编程系列(10)Condition条件队列-并发协作者
本文通过一线大厂面试真题,模拟消费者-生产者的场景,通过简洁的代码演示,帮助读者快速理解并复用。文章还详细解释了Condition与Object.wait()、notify()的区别,并探讨了Condition的核心原理及其实现机制。
|
6月前
|
安全 Java 程序员
Java并发编程中的锁机制与优化策略
【6月更文挑战第17天】在Java并发编程的世界中,锁是维护数据一致性和线程安全的关键。本文将深入探讨Java中的锁机制,包括内置锁、显式锁以及读写锁的原理和使用场景。我们将通过实际案例分析锁的优化策略,如减少锁粒度、使用并发容器以及避免死锁的技巧,旨在帮助开发者提升多线程程序的性能和可靠性。
|
5月前
|
存储 缓存 Java
Java面试题:解释Java中的内存屏障的作用,解释Java中的线程局部变量(ThreadLocal)的作用和使用场景,解释Java中的锁优化,并讨论乐观锁和悲观锁的区别
Java面试题:解释Java中的内存屏障的作用,解释Java中的线程局部变量(ThreadLocal)的作用和使用场景,解释Java中的锁优化,并讨论乐观锁和悲观锁的区别
55 0
|
7月前
|
安全 Java 编译器
Java并发编程中的锁优化策略
【5月更文挑战第30天】 在多线程环境下,确保数据的一致性和程序的正确性是至关重要的。Java提供了多种锁机制来管理并发,但不当使用可能导致性能瓶颈或死锁。本文将深入探讨Java中锁的优化策略,包括锁粗化、锁消除、锁降级以及读写锁的使用,以提升并发程序的性能和响应能力。通过实例分析,我们将了解如何在不同场景下选择和应用这些策略,从而在保证线程安全的同时,最小化锁带来的开销。