【译Py】2018年8月,GitHub上的Python数据科学明星项目:自动化机器学习、自然语言处理、可视化、机器学习工作流

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 原文作者:Matthew Mayo原文地址:GitHub Python Data Science Spotlight: AutoML, NLP, Visualization, ML WorkflowsPython数据分析本文是“五个不容忽视的机器学习项目”一文的续篇。

原文作者:Matthew Mayo
原文地址:GitHub Python Data Science Spotlight: AutoML, NLP, Visualization, ML Workflows

img_c335e712aa5f2496a92adfb666192919.jpe
Python数据分析

本文是“五个不容忽视的机器学习项目”一文的续篇。和上篇文章相比,这次选出的项目涉及更多数据科学领域,并且都是GitHub上的开源项目,我们为每个项目都附上了Repo、文档和入门指南的链接,并对每个项目进行了简单介绍。
下面一起来了解一下这些新兴的热门Python库吧,希望本文对你的工作能有所帮助:

  1. Auto-Keras自动机器学习库
    项目链接:https://github.com/jhfjhfj1/autokeras
    文档:http://autokeras.com
    入门指南:https://autokeras.com/#example
    Auto-Keras是用于自动机器学习(AutoML)的开源软件库。自动机器学习的最终目标是让仅拥有一定数据科学知识或机器学习背景的行业专家可以轻松地应用深度学习模型。Auto-Keras提供了很多用于自动研究深度学习模型架构与超参数的函数。
  2. Finetune Scikit-Learn风格的自然语言处理模型微调器
    项目链接:https://github.com/IndicoDataSolutions/finetune
    文档:https://finetune.indico.io
    入门指南:https://finetune.indico.io
    Finetune提供了“通过生成式预训练改进对语言的理解”的预训练语言模型,并扩充了OpenAI/finetune-language-model库。
  3. GluonNLP - 让自然语言处理变得更简单
    项目链接:https://github.com/dmlc/gluon-nlp
    文档:http://gluon-nlp.mxnet.io
    入门指南: https://github.com/dmlc/gluon-nlp#quick-start-guide
    GluonNLP可以使文本处理、数据加载及构建神经模型变得更容易,加快自然语言处理研究的速度。
  4. animatplot - 基于Matplotlib的Python动图库
    项目链接:https://github.com/t-makaro/animatplot
    文档:https://animatplot.readthedocs.io/en/latest
    入门指南: https://animatplot.readthedocs.io/en/latest/tutorial/getting_started.html
    请注意,本库文档里的例子比较简单,本文引用的是该库在GitHub上列出的功能更全、形式更酷的示例图。
    img_37ebbad1a368b88b3cfcaf9afa3bcc5a.gif
    animatplot
  5. MLflow - 机器学习生命周期的开源平台
    项目链接:https://github.com/mlflow/mlflow
    文档:https://mlflow.org/docs/latest/index.html
    入门指南:https://mlflow.org/docs/latest/quickstart.html
    MLflow是用来管理机器学习整体生命周期的开源平台,这个平台提供了以下主要三个功能:
  • MLflow Tracking:跟踪实验,以用来记录和比较机器学习的参数。
  • MLflow Projects:以可复用、可再现的形式,将机器学习的代码进行打包,以便分享给其他数据科学家或传递给生产环境。
  • MLflow Models:管理各类机器学习库中的模型,并部署到不同的模型服务及应用平台。
    MLflow通过访问REST API和CLI实现其功能,所以它不依赖于某个库,并且支持多种机器学习库与编程语言,为了使用方便,它还内置了Python API。
相关文章
|
3月前
|
搜索推荐 Python
使用Python自动化生成物业通知单
本文介绍如何使用Python结合Pandas和python-docx库自动化生成物业通知单。通过读取Excel数据并填充至Word模板,实现高效准确的通知单批量制作。包括环境准备、代码解析及效果展示,适用于物业管理场景。
104 14
|
3月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
446 10
|
3月前
|
Python
自动化微信朋友圈:Python脚本实现自动发布动态
本文介绍如何使用Python脚本自动化发布微信朋友圈动态,节省手动输入的时间。主要依赖`pyautogui`、`time`、`pyperclip`等库,通过模拟鼠标和键盘操作实现自动发布。代码涵盖打开微信、定位朋友圈、准备输入框、模拟打字等功能。虽然该方法能提高效率,但需注意可能违反微信使用条款,存在风险。定期更新脚本以适应微信界面变化也很重要。
276 61
|
11天前
|
机器学习/深度学习 设计模式 测试技术
Python 高级编程与实战:构建自动化测试框架
本文深入探讨了Python中的自动化测试框架,包括unittest、pytest和nose2,并通过实战项目帮助读者掌握这些技术。文中详细介绍了各框架的基本用法和示例代码,助力开发者快速验证代码正确性,减少手动测试工作量。学习资源推荐包括Python官方文档及Real Python等网站。
|
2月前
|
测试技术 Python
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
163 31
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
|
4月前
|
数据采集 监控 数据挖掘
Python自动化脚本:高效办公新助手###
本文将带你走进Python自动化脚本的奇妙世界,探索其在提升办公效率中的强大潜力。随着信息技术的飞速发展,重复性工作逐渐被自动化工具取代。Python作为一门简洁而强大的编程语言,凭借其丰富的库支持和易学易用的特点,成为编写自动化脚本的首选。无论是数据处理、文件管理还是网页爬虫,Python都能游刃有余地完成任务,极大地减轻了人工操作的负担。接下来,让我们一起领略Python自动化脚本的魅力,开启高效办公的新篇章。 ###
|
19天前
|
存储 数据采集 数据格式
Python自动化Office文档处理全攻略
本文介绍如何使用Python自动化处理Word、Excel和PDF文档,提升办公效率。通过安装`python-docx`、`openpyxl`、`pandas`、`PyPDF2`和`pdfplumber`等库,可以轻松实现读取、修改、创建和批量处理这些文档。具体包括:自动化处理Word文档(如读取、修改内容、调整样式),Excel文档(如读取、清洗、汇总数据),以及PDF文档(如提取文本和表格数据)。结合代码示例和实战案例,帮助你掌握高效办公技巧,减少手动操作的错误率。
44 1
|
2月前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
113 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
3天前
|
Docker Python 容器
Docker——阿里云服务器使用Docker部署python项目全程小记
本文记录了我在阿里云服务器上使用Docker部署python项目(flask为例)的全过程,在这里记录和分享一下,希望可以给大家提供一些参考。
|
3月前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
89 33

热门文章

最新文章