Python网络爬虫四大选择器(正则表达式、BS4、Xpath、CSS)总结

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介:         前几天小编连续写了四篇关于Python选择器的文章,分别用正则表达式、BeautifulSoup、Xpath、CSS选择器分别抓取京东网的商品信息。

        前几天小编连续写了四篇关于Python选择器的文章,分别用正则表达式BeautifulSoupXpathCSS选择器分别抓取京东网的商品信息。今天小编来给大家总结一下这四个选择器,让大家更加深刻的理解和熟悉Python选择器。

一、正则表达式

        正则表达式为我们提供了抓取数据的快捷方式。虽然该正则表达式更容易适应未来变化,但又存在难以构造、可读性差的问题。当在爬京东网的时候,正则表达式如下图所示:

img_1c5c53220fb036908e7dd86b45b3c2ae.jpe
利用正则表达式实现对目标信息的精准采集

        此外 ,我们都知道,网页时常会产生变更,导致网页中会发生一些微小的布局变化时,此时也会使得之前写好的正则表达式无法满足需求,而且还不太好调试。当需要匹配的内容有很多的时候,使用正则表达式提取目标信息会导致程序运行的速度减慢,需要消耗更多内存。

二、BeautifulSoup

        BeautifulSoup是一个非常流行的 Pyhon 模块。该模块可以解析网页,并提供定位内容的便捷接口。通过'pip install beautifulsoup4'就可以实现该模块的安装了。

img_54c5dbba9aade1fafa6a4a58138a3a61.jpe
利用美丽的汤去提取目标信息

        使用 BeautifulSoup的第一步是将己下载的 HTML 内容解析为 soup文档。由 于大多数网页都不具备良好的HTML 格式,因此BeautifulSoup需要对实际格式进行确定。BeautifulSoup能够正确解析缺失的引号并闭合标签,此外还会添加<html >和<body>标签使其成为完整的HTML文档。通常使用find() 和find_all()方法来定位我们需要的元素。

        如果你想了解BeautifulSoup全部方法和参数,可以查阅BeautifulSoup的官方文档。虽然BeautifulSoup在代码的理解上比正则表达式要复杂一些,但是其更加容易构造和理解。

三、Lxml

        Lxml模块使用 C语言编写,其解析速度比 BeautiflSoup更快,而且其安装过程也更为复杂,在此小编就不赘述啦。XPath 使用路径表达式在 XML 文档中选取节点。节点是通过沿着路径或者 step 来选取的。

img_dd79903b488426356168dde4cd89924f.jpe
Xpath选择器

        使用 lxml 模块的第一步和BeautifulSoup一样,也是将有可能不合法的HTML 解析为 统一格式。 虽然Lxml可以正确解析属性两侧缺失的引号,并闭合标签,不过该模块没有额外添加<html >和<body>标签 。

        在线复制Xpath表达式可以很方便的复制Xpath表达式。但是通过该方法得到的Xpath表达式放在程序中一般不能用,而且长的没法看。所以Xpath表达式一般还是要自己亲自上手。

四、CSS

        CSS选择器表示选择元素所使用 的模式。BeautifulSoup整合了CSS选择器的语法和自身方便使用API。在网络爬虫的开发过程中,对于熟悉CSS选择器语法的人,使用CSS选择器是个非常方便的方法。

img_c7aa8e95f147379f057d59f131d76afd.jpe
CSS选择器

下面是一些常用的选择器示例。

        选择所 有标签: *

        选择<a>标 签: a

        选择所有class=”link” 的元素: .link

        选择 class=”link” 的<a>标签: a.link

        选择 id= " home ” 的<a>标签: a#home

        选择父元素为<a>标签的所有< span>子标签: a > span

        选择<a>标签内部的所有<span>标签: a span

        选择title属性为” Home ” 的所有<a>标签: a [title=Home]

五、性能对比

lxml 和正则表达式模块都是C语言编写的,而BeautifulSoup则是纯Python 编写的。下表总结了每种抓取方法的优缺点。

img_2715a71cc416c822d02baf10e0de036a.jpe
选择器性能对比

需要注意的是。lxml在内部实现中,实际上是将CSS选择器转换为等价的Xpath选择器。

六、总结

        为了给大家创建一个学习Python的氛围,小编为大家建立了一个Python学习群: 一八一一二五七七六,群里有小编的同事也会不定期共享干货,不论你是小白还是大牛,小编都非常地欢迎您的加入~~~

        如果你的爬虫瓶颈是下载网页,而不是抽取数据的话,那么使用较慢的方法(如BeautifulSoup) 也不成问题。如果只需抓取少量数据,并且想要避免额外依赖的话,那么正则表达式可能更加适合。不过,通常情况下,lxml是抓取数据的最好选择,这是因为该方法既快速又健壮,而正则表达式和BeautifulSoup只在某些特定场景下有用。

目录
打赏
0
0
0
0
925
分享
相关文章
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
101 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
Python 高级编程与实战:深入理解网络编程与异步IO
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化、调试技巧、数据科学、机器学习、Web 开发和 API 设计。本文将深入探讨 Python 在网络编程和异步IO中的应用,并通过实战项目帮助你掌握这些技术。
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
141 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
利用Python脚本自动备份网络设备配置
通过本文的介绍,我们了解了如何利用Python脚本自动备份网络设备配置。该脚本使用 `paramiko`库通过SSH连接到设备,获取并保存配置文件。通过定时任务调度,可以实现定期自动备份,确保网络设备配置的安全和可用。希望这些内容能够帮助你在实际工作中实现网络设备的自动化备份。
94 14
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
270 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
485 55
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
266 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
143 3
Python网络编程小示例:生成CIDR表示的IP地址范围
本文介绍了如何使用Python生成CIDR表示的IP地址范围,通过解析CIDR字符串,将其转换为二进制形式,应用子网掩码,最终生成该CIDR块内所有可用的IP地址列表。示例代码利用了Python的`ipaddress`模块,展示了从指定CIDR表达式中提取所有IP地址的过程。
114 6