如何利用Python词云和wordart可视化工具对朋友圈数据进行可视化展示

简介: 大前天我们通过Python网络爬虫对朋友圈的数据进行了抓取,感兴趣的朋友可以点击进行查看,如何利用Python网络爬虫抓取微信朋友圈的动态(上)和如何利用Python网络爬虫爬取微信朋友圈动态——附代码(下)。

大前天我们通过Python网络爬虫对朋友圈的数据进行了抓取,感兴趣的朋友可以点击进行查看,如何利用Python网络爬虫抓取微信朋友圈的动态(上)如何利用Python网络爬虫爬取微信朋友圈动态——附代码(下)。今天小编带大家通过词云去将其进行可视化,具体的教程如下。

1、在Python中做词云,需要用到wordcloud库和jieba分词库,没有安装的伙伴可以直接pip安装即可。

img_2b51c835a8ab02f595ed3d25537c5ba7.jpe

2、之后你可能还需要一些字体,如simhei.ttf等,这些字体在网上都有,可以直接进行下载,在做词云的时候会用得到,如下图所示。

img_da69fa15a8eba016599063d749d33653.jpe

3、在items.py的同级目录下建立analyse.py文件,定义analyse_words方法,用于实现词云可视化,jieba.cut用于得到分词结果,具体的代码实现,如下图所示。因为得到的moment.json数据是以JSON格式存储的,所以需要在该文件中导入JSON模块对其进行解析。

img_3dacb8bb2341336da7e7827bef24b7f4.jpe

这个地方需要注意一下,由于我们的memoent.json文件中是中文字符,如果在open()函数中没有加入encoding=’utf-8’的话会导致gbk编码错误,记得将编码加上即可。

4、之后运行程序,得到keys.png图片文件,程序运行的效果如下图所示。可以看到keys.png已经在items.py目录下了。

img_95f1e965a3fa8a558c37a43f77e16293.jpe

5、双击keys.png,如下图所示。

img_02cc90dec7c24b29814dc04eb7a051df.jpe

6、不得不承认,这个词云图片内容确实丰富,不过也十分的丑。小编利用wordart(一个词云网站)将朋友圈数据进行更加美化的可视化。

img_da508d2ecfc7daebf071b910aa79c303.jpe

7、比方说用动物的图案进行可视化,效果图如下图所示。

img_e050ef991a7fe191c033fd237c7e6397.jpe

8、如果直接将数据进行导入的话,wordart会直接将整段话进行可视化,这样显得十分冗余,看上去也不太友好,因此还需要通过Python对数据进行分频统计,之后再导入到wordart中就可以看到想要的效果了。首先,我们需要对json文件进行处理一下,将文本全部导出来,形成一个moment.txt文件。内容如下图所示。

img_07e06eb109e0109c41b5ca617a378630.jpe

9、编写代码,将文本进行分词,代码实现如下所示。

img_c3824aa9262309aac9723fdadba10631.jpe

10、程序运行完成之后,得到的moment_outputs.txt文件,内容如下图所示,可以很清楚的看到分词情况。红色部分是程序运行的过程。

img_afdb1f6827bb991b6efa68bed1cb91a8.jpe

11、继续编写代码,将词频进行统计汇总,代码实现如下图所示。

img_72692cad1d10030ae6918a9f6029714f.jpe

12、程序运行之后,得到一个txt和Excel文件,里边是关于词频统计的信息,如下图所示。红色部分是程序运行的结果,并没有报错。

img_ae1ed172781555850eb57010eb9bf135.jpe

13、将这些关键字导入到wordart中进行可视化,如下图所示。

img_3fe5946901d1b924d7f2348ecfde9f4f.jpe

14、设置一下图案、字体、排版、颜色等等,就可以生成绚丽的词云图了,下图是汪星人词云图。

img_314939d59b2e12e8935a5884bfbd6d62.jpe

15、下图是小云朵词云图,可以给视觉带来一场饕餮盛宴。

img_6f1230df117af169751d49d951fda93b.jpe

小伙伴们,你们有没有觉得很神奇呢?喜欢的话欢迎收藏和转载噢~~

相关文章
|
6天前
|
JavaScript 前端开发 开发者
探索 DrissionPage: 强大的Python网页自动化工具
DrissionPage 是一个基于 Python 的网页自动化工具,结合了浏览器自动化的便利性和 requests 库的高效率。它提供三种页面对象:ChromiumPage、WebPage 和 SessionPage,分别适用于不同的使用场景,帮助开发者高效完成网页自动化任务。
35 4
|
15天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
24 1
|
16天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
16天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
27天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
29 2
|
27天前
|
C语言 开发者 Python
探索Python中的列表推导式:简洁而强大的工具
【10月更文挑战第21天】在Python的世界里,代码的优雅与效率同样重要。列表推导式(List Comprehensions)作为一种强大而简洁的工具,允许开发者通过一行代码完成对列表的复杂操作。本文将深入探讨列表推导式的使用方法、性能考量以及它如何提升代码的可读性和效率。
|
28天前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
57 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
|
15天前
|
索引 Python
SciPy 空间数据1
SciPy 通过 `scipy.spatial` 模块处理空间数据,如判断点是否在边界内、计算最近点等。三角测量是通过测量角度来确定目标距离的方法。多边形的三角测量可将其分解为多个三角形,用于计算面积。Delaunay 三角剖分是一种常用方法,可以对一系列点进行三角剖分。示例代码展示了如何使用 `Delaunay()` 函数创建三角形并绘制。
24 0
|
15天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
24天前
|
C语言 Python
探索Python中的列表推导式:简洁而强大的工具
【10月更文挑战第24天】在Python编程的世界中,追求代码的简洁性和可读性是永恒的主题。列表推导式(List Comprehensions)作为Python语言的一个特色功能,提供了一种优雅且高效的方法来创建和处理列表。本文将深入探讨列表推导式的使用场景、语法结构以及如何通过它简化日常编程任务。