ECCV 2018丨YOLO遇上OpenPose,近200FPS的高帧数多人姿态检测

简介:

在高帧数下,如何实现人体姿态检测?

下面这条刷屏的twitter视频给出了答案。

60841ac9cf6f7c48691851a19aa007bbd141452e

这是今年ECCV上的一篇名为《Pose Proposal Networks》的论文,作者是日本柯尼卡美能达公司的関井大気(Taiki SEKII),结合了去年CVPR上的YOLO和CMU的OpenPose,创造出的新方法,能够实现高帧数视频中的多人姿态检测。

高帧数,无压力

944a99b14ed42531c7bd072f123c2a5a35312790

而其他方法,比如NIPS 2017 的AE(Associative embedding)、ICCV 2017的RMPE(Regional multi-person pose estimation)、CVPR 2017的PAF(Realtime multi-person 2D pose estimation using part affinity fields),都无法实现高帧数尤其是100以上帧数视频的姿态检测。

93ee913fe102f8f2c5044e6cc835f251fd0d56c2

在COCO数据集上也不虚,相比谷歌PersonLab能在更高帧数下运行。

635b1a9445bf94b4af06fe5c3850448084411ceb

来看下具体数据,在头、肩、肘部位和整体上半身识别中超过了其他方法,整体得分也不虚。

神奇“体位”大冒险

另外,常规的姿态检测十分容易出错的“体位”中,该方法也可以规避。

比如从天上跳伞下来这种奇怪的姿势:

93acd5e4962d164e89901de5bb44eec2552f27f3

人数过多的拥挤场景:

db3c1396959c754bcef7d6dc3d3fc770e374ebe9

还有,两个人重叠的图像。

6cd55a4b8542b2869e48975ed47b0242d517261d

注意,右侧站立的女子和她前面在瑜伽垫上的人,完完全全分开了,不会闹出下面这种胳膊腿儿搞错的笑话。

151ea0a8fe07101a036217bc7f9273c49c57df16

原理

bffe407571dc0c7ff873c0d9543e45a4aa53ae66

这是基于ResNet-18的PPN对多人姿势检测的过程:

a) 输入图像;
b) 从输入图像中检测部分边界框;
c) 检测出肢体;
d) 区分图中每个人。

9643b8b9afa4da0e065b31bce4d0d3accaac09c8

这篇论文的方法是先将图片分割为较小的网格,使用较小的网络对每一幅网格图片进行单次物体检测范例,之后通过区域提议(region proposal)框架将姿态检测重定义为目标检测问题。

之后,使用单次CNN直接检测肢体,通过新颖的概率贪婪解析步骤,生成姿势提议。

区域提案部分被定义为边界框检测(Bounding Box Detections),大小和被检测人身材成比例,并且可以仅使用公共关键点注释进行监督。

整个架构由单个完全CNN构成,具有相对较低分辨率的特征图,并使用专为姿势检测性能设计的损耗函数直接进行端到端优化,此架构称为姿态提议网络(Pose Proposal Network,PPN)。PPN借鉴了YOLO的优点。


原文发布时间为:2018-09-9

本文作者:凹非寺 

本文来自云栖社区合作伙伴“量子位”,了解相关信息可以关注“量子位”。

相关文章
|
10月前
|
机器学习/深度学习 Shell 算法框架/工具
【姿态估计】实操记录:使用Dlib与mediapipe进行人脸姿态估计
【姿态估计】实操记录:使用Dlib与mediapipe进行人脸姿态估计
936 0
|
10月前
|
算法 计算机视觉
yolov5 deepsort-船舶目标检测+目标跟踪+单目测距+速度测量(代码+教程)
yolov5 deepsort-船舶目标检测+目标跟踪+单目测距+速度测量(代码+教程)
|
10月前
|
机器学习/深度学习 编解码 测试技术
图像超分:真实感图像超分辨率的局部判别学习方法
图像超分:真实感图像超分辨率的局部判别学习方法
132 0
|
10月前
|
机器学习/深度学习 并行计算 算法
yolov5旋转目标检测-遥感图像检测-无人机旋转目标检测-附代码和原理
yolov5旋转目标检测-遥感图像检测-无人机旋转目标检测-附代码和原理
|
10月前
|
算法 计算机视觉
OpenCV中使用加速鲁棒特征检测SURF与图像降噪讲解与实战(附源码)
OpenCV中使用加速鲁棒特征检测SURF与图像降噪讲解与实战(附源码)
126 0
|
机器学习/深度学习 编解码 达摩院
【OpenVI-图像超分实战篇】别用GAN做超分了,快来试试基于扩散模型的图像超分吧!
近10年来,深度学习技术得到了长足进步,在图像增强领域取得了显著的成果,尤其是以GAN为代表的生成式模型在图像复原、老片修复,图像超分辨率等方面大放异彩。图像超分辨率是视频增强方面,用于提升画质的典型应用。生成对抗网络GAN使得在图像分辨率增加的同时,保持细节特征,补充生成真实的纹理,其中应用广泛的工作是Real-ESRGAN。 扩散模型DiffusionModel在图像超分辨率这方面的新的应用,展现出其超过GAN的生成多样性和真实性。看完后,你会发现,还在用GAN做图像超分辨率吗?已经OUT了,快来试试DiffusionModel吧!
27419 3
【OpenVI-图像超分实战篇】别用GAN做超分了,快来试试基于扩散模型的图像超分吧!
|
机器学习/深度学习 传感器 监控
【目标检测】基于帧间差法实现视频目标检测和轨迹分析附matlab代码和GUI界面
【目标检测】基于帧间差法实现视频目标检测和轨迹分析附matlab代码和GUI界面
|
存储 机器学习/深度学习 人工智能
YOLOv5永不缺席 | YOLO-Pose带来实时性高且易部署的姿态估计模型!!!
YOLOv5永不缺席 | YOLO-Pose带来实时性高且易部署的姿态估计模型!!!
417 0
|
机器学习/深度学习 编解码 算法
CVPR 2023 | IGEV-Stereo & IGEV-MVS:双目立体匹配网络新SOTA!
CVPR 2023 | IGEV-Stereo & IGEV-MVS:双目立体匹配网络新SOTA!
861 0
|
机器学习/深度学习 人工智能 算法
【Pytorch神经网络理论篇】 33 基于图片内容处理的机器视觉:目标检测+图片分割+非极大值抑制+Mask R-CNN模型
目标检测任务的精度相对较高,主要是以检测框的方式,找出图片中目标物体所在的位置。目标检测任务的模型运算量相对较小,速度相对较快。
387 0