Hadoop体系结构中的服务解决介绍

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
日志服务 SLS,月写入数据量 50GB 1个月
云原生网关 MSE Higress,422元/月
简介: 翻了一下最近一段时间写的分享,DKHadoop发行版本下载、安装、运行环境部署等相关内容几乎都已经写了一遍了。虽然有的地方可能写的不是很详细,个人理解水平有限还请见谅吧!我记得在写DKHadoop运行环境部署的时候,遗漏了hadoop服务角色的内容,本篇特地补上这部分内容吧,不然总觉得不舒服。

翻了一下最近一段时间写的分享,DKHadoop发行版本下载、安装、运行环境部署等相关内容几乎都已经写了一遍了。虽然有的地方可能写的不是很详细,个人理解水平有限还请见谅吧!我记得在写DKHadoop运行环境部署的时候,遗漏了hadoop服务角色的内容,本篇特地补上这部分内容吧,不然总觉得不舒服。

要在集群中运行DKHadoop服务,需要指定集群中的一个或多个节点执行该服务的特定功能,角色分配是必须的,没有角色集群将无法正常工作,在分配角色前,需要了解这些角色的含义。

Hadoop服务角色:

1. zookeeper角色:ZooKeeper服务是指包含一个或多个节点的集群提供服务框架用于集群管理。对于集群,Zookeeper服务提供的功能包括维护配置信息、命名、提供HyperBase的分布式同步,推荐在 ZooKeeper集群中至少有3个节点。

2. JDK角色:JDK是 Java 语言的软件开发工具包, JDK是整个Java开发的核心,它包含了Java的运行环境,Java工具和Java基础的类库。

3. Apache-Flume角色:Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接收方(可定制)的能力。

4. Apache-Hive角色:Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行。

5. Apache-Storm角色:Storm是内存级计算,数据直接通过网络导入内存。读写内存比读写磁盘速度快n个数量级。当计算模型比较适合流式时,Storm的流式处理,省去了批处理的收集数据的时间.

6. Elasticsearch角色:Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索、稳定、可靠、快速,安装使用方便。

7. NameNode角色:HDFS系统中的节点用于维护文件系统中所有文件的目录结构并跟踪文件数据存储于哪些数据节点。当客户端需要从HDFS 文件系统中获得文件时,它通过和NameNode通讯来知道客户端哪个数据节点上有客户端需要的文件。 一个Hadoop集群中只能有一个NameNode。NameNode不能被赋予其他角色。

8. DataNode角色:HDFS中,DataNode是用来存储数据块的节点。

9. Secondary NameNode 角色:NameNode上的数据创建周期性检查点的节点。节点将周期性地下载当前NameNode镜像和日志文件,将日志和镜像文件合并为一个新的镜像文件然后上传到NameNode。 被分配了NameNode角色的机器不应再被分配Secondary NameNode 角色。

10. Standby Namenode角色:Standby模式的NameNode元数据(Namespcae information 和 Block 都是和Active NameNode中的元数据是同步的,一但切换成Active模式,马上就可以提供NameNode服务。

11. JournalNode角色:Standby NameName和Active NameNode通过JournalNode通信,保持信息同步。

12. HBase角色:HBase是一个分布式的、面向列的开源数据库。HBase在Hadoop之上提供了类似于BigTable的能力。HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。

13. Kafka角色:Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。 对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消费。

14. Redis角色:Redis是一个开源的使用C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。

15. Scala角色:Scala是一门多范式的编程语言,一种类似Java的编程语言,设计初衷是实现可伸缩的语言、并集成面向对象编程和函数式编程的各种特性。

16. Sqoop角色:Sqoop是一个用来将Hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导入到关系型数据库中。

17. Impala角色:Impala是Cloudera公司主导开发的新型查询系统,它提供SQL语义,能查询存储在Hadoop的HDFS和HBase中的PB级大数据。已有的Hive系统虽然也提供了SQL语义,但由于Hive底层执行使用的是MapReduce引擎,仍然是一个批处理过程,难以满足查询的交互性。相比之下,Impala的最大特点也是最大卖点就是它的快速。

18. Crawler角色:Crawler是大快DKHadoop专有组件,爬虫系统,爬取动态静态数据。

19. Spark角色:Spark是一种与Hadoop相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。Spark 是在Scala语言中实现的,它将Scala用作其应用程序框架。与Hadoop不同,Spark和Scala能够紧密集成,其中的Scala可以像操作本地集合对象一样轻松地操作分布式数据集。

20. HUE角色:HUE是一组可与您的Hadoop  jiqun 交互的网络应用程序。HUE应用能让您浏览HDFS和工作,管理Hive metastore,运行Hive,浏览HBase Sqoop出口数据,提交MapReduce程序,构建自定义的搜索引擎与Solr一起调度重复性的工作流。

相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
存储 分布式计算 大数据
hadoop体系结构杂谈
hadoop体系结构杂谈 今天跟一个朋友在讨论hadoop体系架构,从当下流行的Hadoop+HDFS+MapReduce+Hbase+Pig+Hive+Spark+Storm开始一直讲到HDFS的底层实现,MapReduce的模型计算,到一个云盘如何实现,再到Google分布式史上那最伟大的三篇文章。
1876 0
|
1月前
|
SQL 存储 数据管理
Hadoop-15-Hive 元数据管理与存储 Metadata 内嵌模式 本地模式 远程模式 集群规划配置 启动服务 3节点云服务器实测
Hadoop-15-Hive 元数据管理与存储 Metadata 内嵌模式 本地模式 远程模式 集群规划配置 启动服务 3节点云服务器实测
54 2
|
4月前
|
分布式计算 资源调度 安全
Hadoop停止所有Hadoop服务
【7月更文挑战第20天】
110 2
|
6月前
|
分布式计算 资源调度 Hadoop
重启Hadoop服务
【4月更文挑战第18天】重启Hadoop服务涉及五个步骤:1) 停止所有服务,如使用`stop-all.sh`;2) 检查服务是否停止,通过jps命令;3) 清理临时数据和日志;4) 使用`start-all.sh`重启服务;5) 再次用jps确认服务启动。注意,步骤依Hadoop版本和配置而异,操作前需谨慎并参考官方文档,以防影响运行中的应用程序。
93 2
|
6月前
|
分布式计算 资源调度 Hadoop
Hadoop【部署 02】hadoop-3.1.3 单机版YARN(配置、启动停止shell脚本修改及服务验证)
Hadoop【部署 02】hadoop-3.1.3 单机版YARN(配置、启动停止shell脚本修改及服务验证)
125 0
|
存储 SQL 弹性计算
手把手教你使用自建Hadoop访问全托管服务化HDFS(OSS-HDFS服务)
1. 服务介绍OSS-HDFS服务(JindoFS 服务)是一款云原生数据湖3.0存储产品,基于统一的元数据管理能力,在完全兼容 HDFS 文件系统接口的同时,提供充分的 POSIX 能力支持,能更好的满足大数据和 AI 领域丰富多样的数据湖计算场景。通过OSS-HDFS服务,无需对现有的 Hadoop/Spark 大数据分析应用做任何修改,通过简单的配置就可以像在原生HDFS中那样管理和访问数据
手把手教你使用自建Hadoop访问全托管服务化HDFS(OSS-HDFS服务)
|
存储 分布式计算 Hadoop
|
存储 分布式计算 资源调度
平台服务 开源 Hadoop|学习笔记
快速学习平台服务 开源 Hadoop
平台服务 开源 Hadoop|学习笔记
|
资源调度 分布式计算 数据可视化
集成 Hadoop 服务—页面操作使用 | 学习笔记
快速学习 集成 Hadoop 服务—页面操作使用
123 0
集成 Hadoop 服务—页面操作使用 | 学习笔记
|
存储 资源调度 分布式计算
集成 Hadoop 服务(HDFS、YARN)| 学习笔记
快速学习 集成 Hadoop 服务(HDFS、YARN)
199 0
集成 Hadoop 服务(HDFS、YARN)| 学习笔记

相关实验场景

更多