10分钟让你明白MySQL是如何利用索引的

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 针对MySQL索引,我这边只是提到了在单表查询情况下的模型,通过这篇文章,想必大家应该了解到MySQL大部分情况下是如何利用索引的,如果存在疑问,欢迎联系

转载自For DBA


一、前言

在MySQL中进行SQL优化的时候,经常会在一些情况下,对MySQL能否利用索引有一些迷惑。

譬如:

  1. MySQL 在遇到范围查询条件的时候就停止匹配了,那么到底是哪些范围条件?
  2. MySQL 在LIKE进行模糊匹配的时候又是如何利用索引的呢?
  3. MySQL 到底在怎么样的情况下能够利用索引进行排序?

今天,我将会用一个模型,把这些问题都一一解答,让你对MySQL索引的使用不再畏惧


二、知识补充

key_len

EXPLAIN执行计划中有一列 key_len 用于表示本次查询中,所选择的索引长度有多少字节,通常我们可借此判断联合索引有多少列被选择了。

在这里 key_len 大小的计算规则是:

  • 一般地,key_len 等于索引列类型字节长度,例如int类型为4 bytes,bigint为8 bytes;
  • 如果是字符串类型,还需要同时考虑字符集因素,例如:CHAR(30) UTF8则key_len至少是90 bytes;
  • 若该列类型定义时允许NULL,其key_len还需要再加 1 bytes;
  • 若该列类型为变长类型,例如 VARCHAR(TEXT\BLOB不允许整列创建索引,如果创建部分索引也被视为动态列类型),其key_len还需要再加 2 bytes;

三、哪些条件能用到索引

首先非常感谢登博,给了我一个很好的启发,我通过他的文章,然后结合自己的理解,制作出了这幅图

64472e0456938076bdcb4e9a5a0241c5ee7b7b4b

 

乍一看,是不是很晕,不急,我们慢慢来看

图中一共分了三个部分:

  1. Index Key :MySQL是用来确定扫描的数据范围,实际就是可以利用到的MySQL索引部分,体现在Key Length。
  2. Index Filter:MySQL用来确定哪些数据是可以用索引去过滤,在启用ICP后,可以用上索引的部分。
  3. Table Filter:MySQL无法用索引过滤,回表取回行数据后,到server层进行数据过滤。

我们细细展开。

Index Key

Index Key是用来确定MySQL的一个扫描范围,分为上边界和下边界。

MySQL利用=、>=、> 来确定下边界(first key),利用最左原则,首先判断第一个索引键值在where条件中是否存在,如果存在,则判断比较符号,如果为(=,>=)中的一种,加入下边界的界定,然后继续判断下一个索引键,如果存在且是(>),则将该键值加入到下边界的界定,停止匹配下一个索引键;如果不存在,直接停止下边界匹配。

exp:
idx_c1_c2_c3(c1,c2,c3)
where c1>=1 and c2>2 and c3=1
-->  first key (c1,c2)
--> c1为 '>=' ,加入下边界界定,继续匹配下一个
-->c2 为 '>',加入下边界界定,停止匹配

上边界(last key)和下边界(first key)类似,首先判断是否是否是(=,<=)中的一种,如果是,加入界定,继续下一个索引键值匹配,如果是(<),加入界定,停止匹配

exp:
idx_c1_c2_c3(c1,c2,c3)
where c1<=1 and c2=2 and c3<3
--> first key (c1,c2,c3)
--> c1为 '<=',加入上边界界定,继续匹配下一个
--> c2为 '='加入上边界界定,继续匹配下一个
--> c3 为 '<',加入上边界界定,停止匹配

注:这里简单的记忆是,如果比较符号中包含'='号,'>='也是包含'=',那么该索引键是可以被利用的,可以继续匹配后面的索引键值;如果不存在'=',也就是'>','<',这两个,后面的索引键值就无法匹配了。同时,上下边界是不可以混用的,哪个边界能利用索引的的键值多,就是最终能够利用索引键值的个数。

Index Filter

字面理解就是可以用索引去过滤。也就是字段在索引键值中,但是无法用去确定Index Key的部分。

exp:
idex_c1_c2_c3
where c1>=1 and c2<=2 and c3 =1
index key --> c1
index filter--> c2 c3

这里为什么index key 只是c1呢?因为c2 是用来确定上边界的,但是上边界的c1没有出现(<=,=),而下边界中,c1是>=,c2没有出现,因此index key 只有c1字段。c2,c3 都出现在索引中,被当做index filter.

 

Table Filter

无法利用索引完成过滤,就只能用table filter。此时引擎层会将行数据返回到server层,然后server层进行table filter。


四、Between 和Like 的处理

那么如果查询中存在between 和like,MySQL是如何进行处理的呢?

 

Between

where c1 between  'a' and 'b' 等价于 where c1>='a' and c1 <='b',所以进行相应的替换,然后带入上层模型,确定上下边界即可

Like

首先需要确认的是%不能是最在最左侧,where c1 like '%a' 这样的查询是无法利用索引的,因为索引的匹配需要符合最左前缀原则

where c1 like 'a%'  其实等价于 where c1>='a' and c1<'b' 大家可以仔细思考下。

 


五、索引的排序

在数据库中,如果无法利用索引完成排序,随着过滤数据的数据量的上升,排序的成本会越来越大,即使是采用了limit,但是数据库是会选择将结果集进行全部排序,再取排序后的limit 记录,而且MySQL 针对可以用索引完成排序的limit 有优化,更能减少成本。

Make sure it uses index It is very important to have ORDER BY with LIMIT executed without scanning and sorting full result set, so it is important for it to use index – in this case index range scan will be started and query execution stopped as soon as soon as required amount of rows generated.

 

CREATE TABLE `t1` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `c1` int(11) NOT NULL DEFAULT '0',
  `c2` int(11) NOT NULL DEFAULT '0',
  `c3` int(11) NOT NULL DEFAULT '0',
  `c4` int(11) NOT NULL DEFAULT '0',
  `c5` int(11) NOT NULL DEFAULT '0',
  PRIMARY KEY (`id`),
  KEY `idx_c1_c2_c3` (`c1`,`c2`,`c3`)
) ENGINE=InnoDB AUTO_INCREMENT=8 DEFAULT CHARSET=utf8mb4

 select * from t1;
+----+----+----+----+----+----+
| id | c1 | c2 | c3 | c4 | c5 |
+----+----+----+----+----+----+
|  1 |  3 |  3 |  2 |  0 |  0 |
|  2 |  2 |  4 |  5 |  0 |  0 |
|  3 |  3 |  2 |  4 |  0 |  0 |
|  4 |  1 |  3 |  2 |  0 |  0 |
|  5 |  1 |  3 |  3 |  0 |  0 |
|  6 |  2 |  3 |  5 |  0 |  0 |
|  7 |  3 |  2 |  6 |  0 |  0 |
+----+----+----+----+----+----+
7 rows in set (0.00 sec)

 select c1,c2,c3 from t1;
+----+----+----+
| c1 | c2 | c3 |
+----+----+----+
|  1 |  3 |  2 |
|  1 |  3 |  3 |
|  2 |  3 |  5 |
|  2 |  4 |  5 |
|  3 |  2 |  4 |
|  3 |  2 |  6 |
|  3 |  3 |  2 |
+----+----+----+
7 rows in set (0.00 sec)

存在一张表,c1,c2,c3上面有索引,select c1,c2,c3 from t1; 查询走的是索引全扫描,因此呈现的数据相当于在没有索引的情况下select c1,c2,c3 from t1 order by c1,c2,c3; 的结果
因此,索引的有序性规则是怎么样的呢?

c1=3 —> c2 有序,c3 无序
c1=3,c2=2 — > c3 有序
c1 in(1,2) —> c2 无序 ,c3 无序

有个小规律,idx_c1_c2_c3,那么如何确定某个字段是有序的呢?c1 在索引的最前面,肯定是有序的,c2在第二个位置,只有在c1 唯一确定一个值的时候,c2才是有序的,如果c1有多个值,那么c2 将不一定有序,同理,c3也是类似


六、小结

针对MySQL索引,我这边只是提到了在单表查询情况下的模型,通过这篇文章,想必大家应该了解到MySQL大部分情况下是如何利用索引的,如果存在疑问,欢迎联系我

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
10天前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
91 9
|
14天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
56 18
|
7天前
|
存储 Oracle 关系型数据库
索引在手,查询无忧:MySQL索引简介
MySQL 是一款广泛使用的关系型数据库管理系统,在2024年5月的DB-Engines排名中得分1084,仅次于Oracle。本文介绍MySQL索引的工作原理和类型,包括B+Tree、Hash、Full-text索引,以及主键、唯一、普通索引等,帮助开发者优化查询性能。索引类似于图书馆的分类系统,能快速定位数据行,极大提高检索效率。
33 8
|
13天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
19 7
|
12天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化与慢查询优化:原理与实践
通过本文的介绍,希望您能够深入理解MySQL索引优化与慢查询优化的原理和实践方法,并在实际项目中灵活运用这些技术,提升数据库的整体性能。
45 5
|
16天前
|
存储 关系型数据库 MySQL
Mysql索引:深入理解InnoDb聚集索引与MyisAm非聚集索引
通过本文的介绍,希望您能深入理解InnoDB聚集索引与MyISAM非聚集索引的概念、结构和应用场景,从而在实际工作中灵活运用这些知识,优化数据库性能。
83 7
|
2天前
|
存储 关系型数据库 MySQL
【MYSQL】 ——索引(B树B+树)、设计栈
索引的特点,使用场景,操作,底层结构,B树B+树,MYSQL设计栈
|
4天前
|
存储 Oracle 关系型数据库
数据库传奇:MySQL创世之父的两千金My、Maria
《数据库传奇:MySQL创世之父的两千金My、Maria》介绍了MySQL的发展历程及其分支MariaDB。MySQL由Michael Widenius等人于1994年创建,现归Oracle所有,广泛应用于阿里巴巴、腾讯等企业。2009年,Widenius因担心Oracle收购影响MySQL的开源性,创建了MariaDB,提供额外功能和改进。维基百科、Google等已逐步替换为MariaDB,以确保更好的性能和社区支持。掌握MariaDB作为备用方案,对未来发展至关重要。
18 3
|
4天前
|
安全 关系型数据库 MySQL
MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!
《MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!》介绍了MySQL中的三种关键日志:二进制日志(Binary Log)、重做日志(Redo Log)和撤销日志(Undo Log)。这些日志确保了数据库的ACID特性,即原子性、一致性、隔离性和持久性。Redo Log记录数据页的物理修改,保证事务持久性;Undo Log记录事务的逆操作,支持回滚和多版本并发控制(MVCC)。文章还详细对比了InnoDB和MyISAM存储引擎在事务支持、锁定机制、并发性等方面的差异,强调了InnoDB在高并发和事务处理中的优势。通过这些机制,MySQL能够在事务执行、崩溃和恢复过程中保持
22 3
|
4天前
|
SQL 关系型数据库 MySQL
数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog
《数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog》介绍了如何利用MySQL的二进制日志(Binlog)恢复误删除的数据。主要内容包括: 1. **启用二进制日志**:在`my.cnf`中配置`log-bin`并重启MySQL服务。 2. **查看二进制日志文件**:使用`SHOW VARIABLES LIKE &#39;log_%&#39;;`和`SHOW MASTER STATUS;`命令获取当前日志文件及位置。 3. **创建数据备份**:确保在恢复前已有备份,以防意外。 4. **导出二进制日志为SQL语句**:使用`mysqlbinlog`
28 2