分布式事务解决方案框架(LCN)

简介: 事物概念事物特性(ACID)原子性(A)所谓的原子性就是说,在整个事务中的所有操作,要么全部完成,要么全部不做,没有中间状态。对于事务在执行中发生错误,所有的操作都会被回滚,整个事务就像从没被执行过一样。

事物概念

事物特性(ACID)

原子性(A)

所谓的原子性就是说,在整个事务中的所有操作,要么全部完成,要么全部不做,没有中间状态。对于事务在执行中发生错误,所有的操作都会被回滚,整个事务就像从没被执行过一样。

一致性(C)

事务的执行必须保证系统的一致性,就拿转账为例,A有500元,B有300元,如果在一个事务里A成功转给B50元,那么不管并发多少,不管发生什么,只要事务执行成功了,那么最后A账户一定是450元,B账户一定是350元。

隔离性(I)

所谓的隔离性就是说,事务与事务之间不会互相影响,一个事务的中间状态不会被其他事务感知。

持久性(D)

所谓的持久性,就是说一单事务完成了,那么事务对数据所做的变更就完全保存在了数据库中,即使发生停电,系统宕机也是如此。

这种特性 简称 刚性事物

分布式事物

分布式事物产生原因

img_b22120ddb5253d48f5bbb495f1181305.png
分布式事物产生的原因
img_701036c354e83037ca4c1f3ed3b24208.png
分布式事务产生的场景

在分布式系统,都会垂直拆分数据库,分为支付数据库、订单数据库、积分数据库、优惠全数据库等,业务组成,分为多个数据源,会产生分布式事物问题。

spring事务和分布式事务的区别是什么?
spring事务,本地事务
分布式事务是跨服务间的通讯(不同的数据库连接)

分布式理论知识

CPA理论

img_84a0903f144c6db92e828b8ec8077f93.png

CAP由Eric Brewer在2000年PODC会议上提出[1][2],是Eric Brewer在Inktomi[3]期间研发搜索引擎、分布式web缓存时得出的关于数据一致性(consistency)、服务可用性(availability)、分区容错性(partition-tolerance)的猜想:

• 数据一致性(consistency):如果系统对一个写操作返回成功,那么之后的读请求都必须读到这个新数据;如果返回失败,那么所有读操作都不能读到这个数据,对调用者而言数据具有强一致性(strong consistency) (又叫原子性 atomic、线性一致性 linearizable consistency)[5]

• 服务可用性(availability):所有读写请求在一定时间内得到响应,可终止、不会一直等待

• 分区容错性(partition-tolerance):在网络分区的情况下,被分隔的节点仍能正常对外服务

Base理论

BASE理论是指,Basically Available(基本可用)、Soft-state( 软状态/柔性事务)、Eventual Consistency(最终一致性)。是基于CAP定理演化而来,是对CAP中一致性和可用性权衡的结果。核心思想:即使无法做到强一致性,但每个业务根据自身的特点,采用适当的方式来使系统达到最终一致性。

1、基本可用:指分布式系统在出现故障的时候,允许损失部分可用性,保证核心可用。但不等价于不可用。比如:搜索引擎0.5秒返回查询结果,但由于故障,2秒响应查询结果;网页访问过大时,部分用户提供降级服务,等。

2、软状态:软状态是指允许系统存在中间状态,并且该中间状态不会影响系统整体可用性。即允许系统在不同节点间副本同步的时候存在延时。

3、最终一致性:

系统中的所有数据副本经过一定时间后,最终能够达到一致的状态,不需要实时保证系统数据的强一致性。最终一致性是弱一致性的一种特殊情况。BASE理论面向的是大型高可用可扩展的分布式系统,通过牺牲强一致性来获得可用性。ACID是传统数据库常用的概念设计,追求强一致性模型。

ACID,指数据库事务正确执行的四个基本要素的缩写。包含:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)。

柔性事务和刚性事务

柔性事务满足BASE理论(基本可用,最终一致)

刚性事务满足ACID理论

本文主要围绕分布式事务当中的柔性事务的处理方式进行讨论。

柔性事务分为

  1. 两阶段型

  2. 补偿型

  3. 异步确保型

  4. 最大努力通知型几种。 由于支付宝整个架构是SOA架构,因此传统单机环境下数据库的ACID事务满足了分布式环境下的业务需要,以上几种事务类似就是针对分布式环境下业务需要设定的。

什么是XA接口

XA是一个分布式事务协议,由Tuxedo提出。XA中大致分为两部分:事务管理器和本地资源管理器。其中本地资源管理器往往由数据库实现,比如Oracle、DB2这些商业数据库都实现了XA接口,而事务管理器作为全局的调度者,负责各个本地资源的提交和回滚。XA实现分布式事务的原理如下:

img_bc21041fdd703d200398e124cb571744.png

什么是Jta

作为java平台上事务规范JTA(Java Transaction API)也定义了对XA事务的支持,实际上,JTA是基于XA架构上建模的,在JTA 中,事务管理器抽象为javax.transaction.TransactionManager接口,并通过底层事务服务(即JTS)实现。像很多其他的java规范一样,JTA仅仅定义了接口,具体的实现则是由供应商(如J2EE厂商)负责提供,目前JTA的实现主要由以下几种:

1.J2EE容器所提供的JTA实现(JBoss)
2.独立的JTA实现:如JOTM,Atomikos.这些实现可以应用在那些不使用J2EE应用服务器的环境里用以提供分布事事务保证。如Tomcat,Jetty以及普通的java应用。

基于XA协议的两阶段(2PC)提交

所谓的两个阶段是指:第一阶段:准备阶段(投票阶段)和第二阶段:提交阶段(执行阶段)。

XA一般由两阶段完成,称为two-phase commit(2PC)。

阶段一为准备阶段,即所有的参与者准备执行事务并锁住需要的资源。参与者ready时,向transaction manager汇报自己已经准备好。

阶段二为提交阶段。当transaction manager确认所有参与者都ready后,向所有参与者发送commit命令。

如下图所示:

img_2f166979e84074a359949a7562ab1c2a.png

XA的性能问题

XA的性能很低。一个数据库的事务和多个数据库间的XA事务性能对比可发现,性能差10倍左右。因此要尽量避免XA事务,例如可以将数据写入本地,用高性能的消息系统分发数据。或使用数据库复制等技术。

只有在这些都无法实现,且性能不是瓶颈时才应该使用XA。

分布式事物解决方案

分布式事物问题,在互联网公司比较常见,例如“”分布式事物解决方案 可以使用全局事物2pc(两段提交协议)、3pc(三段提交协议),消息中间件、tcc、gts、提供回滚接口、分布式数据库

2PC和3PC区别:https://blog.csdn.net/secretx/article/details/53322989
LCN 核心采用3PC+TCC补偿机制

使用LCN框架解决分布式事务

什么是LCN框架

LCN分布式事务框架v4.0 https://www.txlcn.org
"LCN并不生产事务,LCN只是本地事务的搬运工"

框架特点

兼容SpringCloud、Dubbo

使用简单,低依赖,代码完全开源

基于切面的强一致性事务框架

高可用,模块可以依赖Dubbo或SpringCloud的集群方式做集群化,TxManager也可以做集群化

支持本地事务和分布式事务共存

事务补偿机制,服务故障或挂机再启动时可恢复事务

LCN框架原理

参考网站 https://github.com/codingapi/tx-lcn/wiki/LCN%E5%8E%9F%E7%90%86

img_24de548fd582ad4989ae74013d1024e9.png
lcn框架原理

核心步骤

创建事务组 是指在事务发起方开始执行业务代码之前先调用TxManager创建事务组对象,然后拿到事务标示GroupId的过程。

添加事务组 添加事务组是指参与方在执行完业务方法以后,将该模块的事务信息添加通知给TxManager的操作。

关闭事务组 是指在发起方执行完业务代码以后,将发起方执行结果状态通知给TxManager的动作。当执行完关闭事务组的方法以后,TxManager将根据事务组信息来通知相应的参与模块提交或回滚事务。

目录
相关文章
|
2月前
|
Java 数据库
在Java中使用Seata框架实现分布式事务的详细步骤
通过以上步骤,利用 Seata 框架可以实现较为简单的分布式事务处理。在实际应用中,还需要根据具体业务需求进行更详细的配置和处理。同时,要注意处理各种异常情况,以确保分布式事务的正确执行。
|
2月前
|
消息中间件 Java Kafka
在Java中实现分布式事务的常用框架和方法
总之,选择合适的分布式事务框架和方法需要综合考虑业务需求、性能、复杂度等因素。不同的框架和方法都有其特点和适用场景,需要根据具体情况进行评估和选择。同时,随着技术的不断发展,分布式事务的解决方案也在不断更新和完善,以更好地满足业务的需求。你还可以进一步深入研究和了解这些框架和方法,以便在实际应用中更好地实现分布式事务管理。
|
9天前
|
存储 监控 数据可视化
常见的分布式定时任务调度框架
分布式定时任务调度框架用于在分布式系统中管理和调度定时任务,确保任务按预定时间和频率执行。其核心概念包括Job(任务)、Trigger(触发器)、Executor(执行器)和Scheduler(调度器)。这类框架应具备任务管理、任务监控、良好的可扩展性和高可用性等功能。常用的Java生态中的分布式任务调度框架有Quartz Scheduler、ElasticJob和XXL-JOB。
181 66
|
4月前
|
存储 SQL 微服务
常用的分布式事务解决方案(三)
常用的分布式事务解决方案(三)
|
2天前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
13 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
4月前
|
关系型数据库 MySQL
常见分布式事务的解决方案(一)
常见分布式事务的解决方案(一)
|
17天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
53 2
|
2月前
|
存储 Java 关系型数据库
在Spring Boot中整合Seata框架实现分布式事务
可以在 Spring Boot 中成功整合 Seata 框架,实现分布式事务的管理和处理。在实际应用中,还需要根据具体的业务需求和技术架构进行进一步的优化和调整。同时,要注意处理各种可能出现的问题,以保障分布式事务的顺利执行。
85 6
|
2月前
|
数据库
如何在Seata框架中配置分布式事务的隔离级别?
总的来说,配置分布式事务的隔离级别是实现分布式事务管理的重要环节之一,需要认真对待和仔细调整,以满足业务的需求和性能要求。你还可以进一步深入研究和实践 Seata 框架的配置和使用,以更好地应对各种分布式事务场景的挑战。
46 6
|
2月前
|
消息中间件 运维 数据库
Seata框架和其他分布式事务框架有什么区别
Seata框架和其他分布式事务框架有什么区别
35 1