利用docker部署深度学习模型的一个最佳实践

简介:

最近团队的模型部署上线终于全面开始用上docker了,这感觉,真香!

讲道理,docker是天然的微服务,确实是能敏捷高效的解决深度学习这一块的几个痛点。

部分神经网络框架比如caffe依赖过重,安装困难。
各种网络模型未做工程化优化,部署困难。
tensorflow等框架对GPU等硬件的占用难以灵活控制。

对于做应用来说,这些问题诸如对GPU的硬件的管理,对复杂依赖的部署,而这些正好就是docker的强项。而python本身表达能力强,可以以很短的代码量达成我们的目的。

部署

具体的部署步骤涉及这几个工具链:

Dockerfile进行模型的镜像部署。
docker-py进行container的启动和关闭。
grpc和进行模型的外部通信。
python的with语句表达模型的加载和资源的释放。
gitlab进行内网的代码分发和版本控制。

整个接口的调用精简成面向对象的调用方式,with语句进入时启动模型,占用GPU,打开rpc调用端口,之后在调用结束后退出模型,释放资源,整个调用过程就简化成如下样子:


with Model_Docker() as sess:
img = cv2.imread('demo.jpg')
r = sess.run(img)
print('result:',r,'type',type(r))

其中Model_Docker是这样的:


class CTPN_Docker(object):

def __init__(self):
self.client = docker.from_env()

def get_container(self,client):
container = client.containers.run(image = DEMO_IMAGE_NAME:TAG,
command = "python server.py",
runtime='nvidia',
environment = ["CUDA_VISIBLE_DEVICES=0"],
ports = {'8888/tcp':'8888'},
detach=True,
auto_remove = True)
return container

def __enter__(self):
self.container = self.get_container(self.client)
for line in self.container.logs(stream=True):
if line.strip().find(b'grpc_server_start') >= 0:
break
return self

def __exit__(self, exc_type, exc_val, exc_tb):
self.container.stop()
print('container has stopped.')

def run(self,img):
assert isinstance(img,np.ndarray), 'img must be a numpy array.'
imgstr = img.tobytes()
shape = json.dumps(img.shape)
stub = ctpn_pb2_grpc.ModelStub(grpc.insecure_channel('localhost:50051'))
response = stub.predict(ctpn_pb2.rect_request(img=imgstr, shape=shape))
return json.loads(response.message)

整个流程是这么个步骤:

init 方法获得docker client。
get_container方法实例化一个container。
with语句进入接口的 enter 方法,负责获取container实例和实例内模型启动结束的flag。
with语句清理接口的 exit 方法,负责实例的关闭。
run方法通过grpc调用docker内模型和返回结果。

docker-py是一个docker的python接口,docker除了cmdline的操作方式,还提供了REST的调用接口,docker-py就是其中一个很人性化的封装,具体使用可见官方文档。

container的实例化中有这几个地方需要注意:

runtime需要用nvidia,与使用nvidia-docker效果一样。
detach是后台模式,与-d效果一样。
auto_remove是自动删除,与--rm效果类似。
environment 来设定CUDA_VISIBLE_DEVICES。
ports 来指定导出端口映射。

除了docker-py调用中的这些技巧,还有如下几个指令在构建过程中值得注意。

1、grpc的编译,这里没啥好说的,和grpc的官方说明文档里一样。

RUN python -m grpc_tools.protoc --python_out=. --grpc_python_out=. -I. mode.proto

2、docker image的构建,有时候构建需要添加--no-cache,避免远程资源更新了,docker构建却没重新。

docker build --no-cache -t name .

3、pip安装的时候需要添加几个参数,-r指定.txt安装,-i指定清华镜像为安装源,--no-cache-dir压缩docker镜像。

RUN pip install -r requirements_docker.txt -i https://pypi.tuna.tsinghua.edu.cn/simple --no-cache-dir

后记

这一轮AI浪潮扑腾到今天,也积累了大量可落地的框架和应用。不过在github欢快的clone代码的时候,一直注意到一些事。和web等领域不同的是,几乎所有模型几乎都是以源代码的形式分发的,很少有工程化的封装,更别说封装成库来部署了。就拿现在我在做的目标检测和文字识别的几个模型来说,yolo、fasterrcnn、ctpn和crnn等都是这样。

当然这也好理解,这些开源作品基本都是大佬在水文章之余写的,而且一个完整的模型包括训练、测试和预测,模型在公开数据集上的训练效果才是关键,工程化的问题并不是最重要的事情,不过我还是想吐槽一下。

比如fasterrcnn中训练数据是写死的,准备好训练集后得通过一个软连接将训练集和训练数据替换掉。这还不是最毒瘤的,较新的ctpn是继承自fasterrcnn,也是采用这种方法.

又比如在导入数据阶段也是各用各的法子,这些做法有往往采用多线程和多进程,结果管理不好,一大堆死线程不说,还经常把cpu跑满,用过的模型中darkflow和east都有这样的问题。

还有在写inference是,还常常遇到需要修改输入输出tensor的情况,在输入端加placeholder,稍微对tensorflow不熟,同时还需要修改一些在预测阶段有所改变的tensor。确实是很不人道。

最后想提一点,这种部署方式除了部署时灵活方便,另外一个额外的好处就是使用jupyter时也方便,在jupyter使用时最常见的问题有两个,一个是需要经常使用set_env去设置CUDA_VISIBLE_DEVICES,另一个是用完了得把notebook关掉,不然jupyter进程会一直占用GPU。


原文发布时间为:2018-09-5

本文作者:丁果

本文来自云栖社区合作伙伴“Python中文社区”,了解相关信息可以关注“Python中文社区”。

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
2月前
|
机器学习/深度学习 算法 定位技术
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现裂缝的检测识别(C#代码UI界面版)
本项目基于YOLOv8模型与C#界面,结合Baumer工业相机,实现裂缝的高效检测识别。支持图像、视频及摄像头输入,具备高精度与实时性,适用于桥梁、路面、隧道等多种工业场景。
290 27
|
1月前
|
机器学习/深度学习 数据可视化 算法
深度学习模型结构复杂、参数众多,如何更直观地深入理解你的模型?
深度学习模型虽应用广泛,但其“黑箱”特性导致可解释性不足,尤其在金融、医疗等敏感领域,模型决策逻辑的透明性至关重要。本文聚焦深度学习可解释性中的可视化分析,介绍模型结构、特征、参数及输入激活的可视化方法,帮助理解模型行为、提升透明度,并推动其在关键领域的安全应用。
208 0
|
11天前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
51 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
2月前
|
机器学习/深度学习 人工智能 PyTorch
AI 基础知识从 0.2 到 0.3——构建你的第一个深度学习模型
本文以 MNIST 手写数字识别为切入点,介绍了深度学习的基本原理与实现流程,帮助读者建立起对神经网络建模过程的系统性理解。
290 15
AI 基础知识从 0.2 到 0.3——构建你的第一个深度学习模型
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI 基础知识从 0.3 到 0.4——如何选对深度学习模型?
本系列文章从机器学习基础出发,逐步深入至深度学习与Transformer模型,探讨AI关键技术原理及应用。内容涵盖模型架构解析、典型模型对比、预训练与微调策略,并结合Hugging Face平台进行实战演示,适合初学者与开发者系统学习AI核心知识。
275 15
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习模型、算法与应用的全方位解析
深度学习,作为人工智能(AI)的一个重要分支,已经在多个领域产生了革命性的影响。从图像识别到自然语言处理,从语音识别到自动驾驶,深度学习无处不在。本篇博客将深入探讨深度学习的模型、算法及其在各个领域的应用。
451 3
|
3月前
|
机器学习/深度学习 存储 PyTorch
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
本文通过使用 Kaggle 数据集训练情感分析模型的实例,详细演示了如何将 PyTorch 与 MLFlow 进行深度集成,实现完整的实验跟踪、模型记录和结果可复现性管理。文章将系统性地介绍训练代码的核心组件,展示指标和工件的记录方法,并提供 MLFlow UI 的详细界面截图。
132 2
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
|
7月前
|
机器学习/深度学习 数据采集 自然语言处理
深度学习实践技巧:提升模型性能的详尽指南
深度学习模型在图像分类、自然语言处理、时间序列分析等多个领域都表现出了卓越的性能,但在实际应用中,为了使模型达到最佳效果,常规的标准流程往往不足。本文提供了多种深度学习实践技巧,包括数据预处理、模型设计优化、训练策略和评价与调参等方面的详细操作和代码示例,希望能够为应用实战提供有效的指导和支持。
|
9月前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
389 73
|
8月前
|
机器学习/深度学习 存储 人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
1890 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式