Java并发编程实战系列10之避免活跃性危险

简介: 10.1 死锁哲学家问题有环A等B,B等A数据库往往可以检测和解决死锁//TODOJVM不行,一旦死锁只有停止重启。下面分别介绍了几种典型的死锁情况:10.1.1 Lock ordering Deadlocks下面是一个经典的锁顺序死锁:两个线程用不同的顺序来获得相同的锁,如果按照锁的请求顺序来请求锁,就不会发生这种循环依赖的情况。

10.1 死锁

哲学家问题

有环

A等B,B等A

数据库往往可以检测和解决死锁//TODO

JVM不行,一旦死锁只有停止重启。

下面分别介绍了几种典型的死锁情况:

10.1.1 Lock ordering Deadlocks

下面是一个经典的锁顺序死锁:两个线程用不同的顺序来获得相同的锁,如果按照锁的请求顺序来请求锁,就不会发生这种循环依赖的情况。

public class LeftRightDeadlock {
    private final Object left = new Object();
    private final Object right = new Object();

    public void leftRight() {
        synchronized (left) {
            synchronized (right) {
                doSomething();
            }
        }
    }

    public void rightLeft() {
        synchronized (right) {
            synchronized (left) {
                doSomethingElse();
            }
        }
    }

    void doSomething() {
    }

    void doSomethingElse() {
    }
}

10.1.1 Dynamic Lock Order Deadlocks

下面的转账例子,如果一个线程X向Y转,而另外一个线程Y向X也转,那么就会发生死锁。

public class DynamicOrderDeadlock {
    // Warning: deadlock-prone!
    public static void transferMoney(Account fromAccount,
                                     Account toAccount,
                                     DollarAmount amount)
            throws InsufficientFundsException {
        synchronized (fromAccount) {
            synchronized (toAccount) {
                if (fromAccount.getBalance().compareTo(amount) < 0)
                    throw new InsufficientFundsException();
                else {
                    fromAccount.debit(amount);
                    toAccount.credit(amount);
                }
            }
        }
    }

    static class DollarAmount implements Comparable<DollarAmount> {
        // Needs implementation

        public DollarAmount(int amount) {
        }

        public DollarAmount add(DollarAmount d) {
            return null;
        }

        public DollarAmount subtract(DollarAmount d) {
            return null;
        }

        public int compareTo(DollarAmount dollarAmount) {
            return 0;
        }
    }

    static class Account {
        private DollarAmount balance;
        private final int acctNo;
        private static final AtomicInteger sequence = new AtomicInteger();

        public Account() {
            acctNo = sequence.incrementAndGet();
        }

        void debit(DollarAmount d) {
            balance = balance.subtract(d);
        }

        void credit(DollarAmount d) {
            balance = balance.add(d);
        }

        DollarAmount getBalance() {
            return balance;
        }

        int getAcctNo() {
            return acctNo;
        }
    }

    static class InsufficientFundsException extends Exception {
    }
}

解决办法还是顺序话锁,考虑针对两种情况取hashcode然后判断if-else里面决定锁顺序。

class Helper {
            public void transfer() throws InsufficientFundsException {
                if (fromAcct.getBalance().compareTo(amount) < 0)
                    throw new InsufficientFundsException();
                else {
                    fromAcct.debit(amount);
                    toAcct.credit(amount);
                }
            }
        }
        int fromHash = System.identityHashCode(fromAcct);
        int toHash = System.identityHashCode(toAcct);

        if (fromHash < toHash) {
            synchronized (fromAcct) {
                synchronized (toAcct) {
                    new Helper().transfer();
                }
            }
        } else if (fromHash > toHash) {
            synchronized (toAcct) {
                synchronized (fromAcct) {
                    new Helper().transfer();
                }
            }
        } else {
            synchronized (tieLock) {
                synchronized (fromAcct) {
                    synchronized (toAcct) {
                        new Helper().transfer();
                    }
                }
            }
        }

10.1.3 在协作对象之间发生死锁Deadlocks Between Cooperating Objects

下面的例子setLocation和getImage都会获取两把锁,会存在两个线程按照不同的顺序获取锁的情况。

public class CooperatingDeadlock {
    // Warning: deadlock-prone!
    class Taxi {
        @GuardedBy("this") private Point location, destination;
        private final Dispatcher dispatcher;

        public Taxi(Dispatcher dispatcher) {
            this.dispatcher = dispatcher;
        }

        public synchronized Point getLocation() {
            return location;
        }

        public synchronized void setLocation(Point location) {
            this.location = location;
            if (location.equals(destination))
                dispatcher.notifyAvailable(this);
        }

        public synchronized Point getDestination() {
            return destination;
        }

        public synchronized void setDestination(Point destination) {
            this.destination = destination;
        }
    }

    class Dispatcher {
        @GuardedBy("this") private final Set<Taxi> taxis;
        @GuardedBy("this") private final Set<Taxi> availableTaxis;

        public Dispatcher() {
            taxis = new HashSet<Taxi>();
            availableTaxis = new HashSet<Taxi>();
        }

        public synchronized void notifyAvailable(Taxi taxi) {
            availableTaxis.add(taxi);
        }

        public synchronized Image getImage() {
            Image image = new Image();
            for (Taxi t : taxis)
                image.drawMarker(t.getLocation());
            return image;
        }
    }

    class Image {
        public void drawMarker(Point p) {
        }
    }
}

10.1.4 开放调用

减小锁的力度,锁不嵌套。

class CooperatingNoDeadlock {
    @ThreadSafe
    class Taxi {
        @GuardedBy("this") private Point location, destination;
        private final Dispatcher dispatcher;

        public Taxi(Dispatcher dispatcher) {
            this.dispatcher = dispatcher;
        }

        public synchronized Point getLocation() {
            return location;
        }

        public synchronized void setLocation(Point location) {
            boolean reachedDestination;
            synchronized (this) {
                this.location = location;
                reachedDestination = location.equals(destination);
            }
            if (reachedDestination)
                dispatcher.notifyAvailable(this);
        }

        public synchronized Point getDestination() {
            return destination;
        }

        public synchronized void setDestination(Point destination) {
            this.destination = destination;
        }
    }

    @ThreadSafe
    class Dispatcher {
        @GuardedBy("this") private final Set<Taxi> taxis;
        @GuardedBy("this") private final Set<Taxi> availableTaxis;

        public Dispatcher() {
            taxis = new HashSet<Taxi>();
            availableTaxis = new HashSet<Taxi>();
        }

        public synchronized void notifyAvailable(Taxi taxi) {
            availableTaxis.add(taxi);
        }

        public Image getImage() {
            Set<Taxi> copy;
            synchronized (this) {
                copy = new HashSet<Taxi>(taxis);
            }
            Image image = new Image();
            for (Taxi t : copy)
                image.drawMarker(t.getLocation());
            return image;
        }
    }

    class Image {
        public void drawMarker(Point p) {
        }
    }

}

1.0.15 资源死锁

  • 数据库连接池,A持有数据库D1连接,等待与D2连接,B持有D2的连接,等待与D1连接。
  • 线程饥饿死锁,如8.1.1小节的例子。

10.2 死锁的避免与诊断

10.2.1 支持定时的锁

tryLock

10.2.2 kill -3 发信号给JVM dump线程

10.3 其他活跃性危险

10.3.1 饥饿

10.3.3 活锁Livelock

他不会阻塞线程,但是也不能继续执行,因为线程在不断的重复执行相同的操作,而且总会失败。

例如处理事务消,回滚后再次重新把任务放在队头。

又例如发送数据包,都选择1s后重试,那么总会冲突,所以可以考虑一个随机数时间间隔。

目录
相关文章
|
1月前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
34 0
|
1月前
|
Java 程序员
Java编程中的异常处理:从基础到高级
在Java的世界中,异常处理是代码健壮性的守护神。本文将带你从异常的基本概念出发,逐步深入到高级用法,探索如何优雅地处理程序中的错误和异常情况。通过实际案例,我们将一起学习如何编写更可靠、更易于维护的Java代码。准备好了吗?让我们一起踏上这段旅程,解锁Java异常处理的秘密!
|
17天前
|
存储 缓存 Java
Java 并发编程——volatile 关键字解析
本文介绍了Java线程中的`volatile`关键字及其与`synchronized`锁的区别。`volatile`保证了变量的可见性和一定的有序性,但不能保证原子性。它通过内存屏障实现,避免指令重排序,确保线程间数据一致。相比`synchronized`,`volatile`性能更优,适用于简单状态标记和某些特定场景,如单例模式中的双重检查锁定。文中还解释了Java内存模型的基本概念,包括主内存、工作内存及并发编程中的原子性、可见性和有序性。
Java 并发编程——volatile 关键字解析
|
21天前
|
算法 Java 调度
java并发编程中Monitor里的waitSet和EntryList都是做什么的
在Java并发编程中,Monitor内部包含两个重要队列:等待集(Wait Set)和入口列表(Entry List)。Wait Set用于线程的条件等待和协作,线程调用`wait()`后进入此集合,通过`notify()`或`notifyAll()`唤醒。Entry List则管理锁的竞争,未能获取锁的线程在此排队,等待锁释放后重新竞争。理解两者区别有助于设计高效的多线程程序。 - **Wait Set**:线程调用`wait()`后进入,等待条件满足被唤醒,需重新竞争锁。 - **Entry List**:多个线程竞争锁时,未获锁的线程在此排队,等待锁释放后获取锁继续执行。
61 12
|
18天前
|
存储 安全 Java
Java多线程编程秘籍:各种方案一网打尽,不要错过!
Java 中实现多线程的方式主要有四种:继承 Thread 类、实现 Runnable 接口、实现 Callable 接口和使用线程池。每种方式各有优缺点,适用于不同的场景。继承 Thread 类最简单,实现 Runnable 接口更灵活,Callable 接口支持返回结果,线程池则便于管理和复用线程。实际应用中可根据需求选择合适的方式。此外,还介绍了多线程相关的常见面试问题及答案,涵盖线程概念、线程安全、线程池等知识点。
102 2
|
21天前
|
Java
Java基础却常被忽略:全面讲解this的实战技巧!
本次分享来自于一道Java基础的面试试题,对this的各种妙用进行了深度讲解,并分析了一些关于this的常见面试陷阱,主要包括以下几方面内容: 1.什么是this 2.this的场景化使用案例 3.关于this的误区 4.总结与练习
|
2月前
|
设计模式 Java 开发者
Java多线程编程的陷阱与解决方案####
本文深入探讨了Java多线程编程中常见的问题及其解决策略。通过分析竞态条件、死锁、活锁等典型场景,并结合代码示例和实用技巧,帮助开发者有效避免这些陷阱,提升并发程序的稳定性和性能。 ####
|
2月前
|
缓存 Java 开发者
Java多线程编程的陷阱与最佳实践####
本文深入探讨了Java多线程编程中常见的陷阱,如竞态条件、死锁和内存一致性错误,并提供了实用的避免策略。通过分析典型错误案例,本文旨在帮助开发者更好地理解和掌握多线程环境下的编程技巧,从而提升并发程序的稳定性和性能。 ####
|
1月前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
1月前
|
Java 调度
Java中的多线程编程与并发控制
本文深入探讨了Java编程语言中多线程编程的基础知识和并发控制机制。文章首先介绍了多线程的基本概念,包括线程的定义、生命周期以及在Java中创建和管理线程的方法。接着,详细讲解了Java提供的同步机制,如synchronized关键字、wait()和notify()方法等,以及如何通过这些机制实现线程间的协调与通信。最后,本文还讨论了一些常见的并发问题,例如死锁、竞态条件等,并提供了相应的解决策略。
53 3