史上最快! 10小时大数据入门实战(四)-分布式资源调度YARN

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 1 YARN 产生背景2 YARN 架构3 YARN 执行流程1.
img_081b7b52874b3d64f1c3bcca356ef7d0.png

1 YARN 产生背景

img_1d1b5340c96210e403b8bacfb7d5d342.png

img_2a8c6e4a2363d1b2c0a1a5b54ace6b6a.png

img_afdd9a6b14de475aa359a36642a1dab7.png

img_58c71cd5e96c728209f434e50f1d8822.png

img_0e537367da2da70ef88690fc38271d8d.png

img_05ef4110ff658a8443633220b0bc5c82.png

2 YARN 架构

img_6cc914aecc64a39654a97f8b52b2e056.png

img_efe64868333b075d28deb35aa62a62d6.png

img_77bd1858a9cea62e6bfb257fabc05238.png

3 YARN 执行流程

img_e7211473e7eda4e4894dbac3dd3a9290.png

img_0dc1ad7a3efbdf93b7b31a160cb65b97.png

1.client向yarn提交job,首先找ResourceManager分配资源,
2.ResourceManager开启一个Container,在Container中运行一个Application manager
3.Application manager找一台nodemanager启动Application master,计算任务所需的计算
4.Application master向Application manager(Yarn)申请运行任务所需的资源
5.Resource scheduler将资源封装发给Application master
6.Application master将获取到的资源分配给各个nodemanager
7.各个nodemanager得到任务和资源开始执行map task
8.map task执行结束后,开始执行reduce task
9.map task和 reduce task将执行结果反馈给Application master
10.Application master将任务执行的结果反馈pplication manager。

4 YARN 环境搭建

5 提交 PI 的 MapReduce 作业到 TARN 上执行

img_bd6bf584380092a29885c57aecf3d363.png
相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
3月前
|
机器学习/深度学习 并行计算 算法
基于目标级联法的微网群多主体分布式优化调度(Matlab代码实现)
基于目标级联法的微网群多主体分布式优化调度(Matlab代码实现)
|
5月前
|
人工智能 Kubernetes 数据可视化
Kubernetes下的分布式采集系统设计与实战:趋势监测失效引发的架构进化
本文回顾了一次关键词监测任务在容器集群中失效的全过程,分析了中转IP复用、调度节奏和异常处理等隐性风险,并提出通过解耦架构、动态IP分发和行为模拟优化采集策略,最终实现稳定高效的数据抓取与分析。
Kubernetes下的分布式采集系统设计与实战:趋势监测失效引发的架构进化
|
7月前
|
消息中间件 运维 Kafka
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
在数字化转型中,企业亟需从海量数据中快速提取价值并转化为业务增长动力。5月15日19:00-21:00,阿里云三位技术专家将讲解Kafka与Flink的强强联合方案,帮助企业零门槛构建分布式实时分析平台。此组合广泛应用于实时风控、用户行为追踪等场景,具备高吞吐、弹性扩缩容及亚秒级响应优势。直播适合初学者、开发者和数据工程师,参与还有机会领取定制好礼!扫描海报二维码或点击链接预约直播:[https://developer.aliyun.com/live/255088](https://developer.aliyun.com/live/255088)
524 35
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
|
7月前
|
消息中间件 运维 Kafka
直播预告|Kafka+Flink 双引擎实战:手把手带你搭建分布式实时分析平台!
直播预告|Kafka+Flink 双引擎实战:手把手带你搭建分布式实时分析平台!
224 12
|
3月前
|
存储 算法 安全
“卧槽,系统又崩了!”——别慌,这也许是你看过最通俗易懂的分布式入门
本文深入解析分布式系统核心机制:数据分片与冗余副本实现扩展与高可用,租约、多数派及Gossip协议保障一致性与容错。探讨节点故障、网络延迟等挑战,揭示CFT/BFT容错原理,剖析规模与性能关系,为构建可靠分布式系统提供理论支撑。
217 2
|
3月前
|
NoSQL Java 调度
分布式锁与分布式锁使用 Redis 和 Spring Boot 进行调度锁(不带 ShedLock)
分布式锁是分布式系统中用于同步多节点访问共享资源的机制,防止并发操作带来的冲突。本文介绍了基于Spring Boot和Redis实现分布式锁的技术方案,涵盖锁的获取与释放、Redis配置、服务调度及多实例运行等内容,通过Docker Compose搭建环境,验证了锁的有效性与互斥特性。
213 0
分布式锁与分布式锁使用 Redis 和 Spring Boot 进行调度锁(不带 ShedLock)
|
4月前
|
边缘计算 运维 算法
含分布式电源的配电网日前两阶段优化调度模型(Matlab代码实现)
含分布式电源的配电网日前两阶段优化调度模型(Matlab代码实现)
|
3月前
|
并行计算 算法 安全
【ADMM、碳排放】基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究【IEEE6节点、IEEE30节点、IEEE118节点】(Matlab代码实现)
【ADMM、碳排放】基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究【IEEE6节点、IEEE30节点、IEEE118节点】(Matlab代码实现)
177 0
|
5月前
|
数据采集 缓存 NoSQL
分布式新闻数据采集系统的同步效率优化实战
本文介绍了一个针对高频新闻站点的分布式爬虫系统优化方案。通过引入异步任务机制、本地缓存池、Redis pipeline 批量写入及身份池策略,系统采集效率提升近两倍,数据同步延迟显著降低,实现了分钟级热点追踪能力,为实时舆情监控与分析提供了高效、稳定的数据支持。
165 1
分布式新闻数据采集系统的同步效率优化实战
|
5月前
|
数据采集 分布式计算 大数据
不会Python,还敢说搞大数据?一文带你入门大数据编程的“硬核”真相
不会Python,还敢说搞大数据?一文带你入门大数据编程的“硬核”真相
141 1