解释器模式

简介: 解释器模式:解释器模式是类的行为模式。给定一个语言之后,解释器模式可以定义出其文法的一种表示,并同时提供一个解释器。客户端可以使用这个解释器来解释这个语言中的句子。组成模式所涉及到4个角色:抽象表达式(Expression)角色:声明一个所有的具体表达式角色都需要实现的抽象接口。这个接口主要是一个interpret()方法,称做解释操作。终结符表达式(Terminal Expre

解释器模式:

解释器模式是类的行为模式。给定一个语言之后,解释器模式可以定义出其文法的一种表示,并同时提供一个解释器。客户端可以使用这个解释器来解释这个语言中的句子。

组成

模式所涉及到4个角色:
  • 抽象表达式(Expression)角色:声明一个所有的具体表达式角色都需要实现的抽象接口。这个接口主要是一个interpret()方法,称做解释操作。
  • 终结符表达式(Terminal Expression)角色:实现了抽象表达式角色所要求的接口,主要是一个interpret()方法;文法中的每一个终结符都有一个具体终结表达式与之相对应。比如有一个简单的公式R=R1+R2,在里面R1和R2就是终结符,对应的解析R1和R2的解释器就是终结符表达式。
  • 非终结符表达式(Nonterminal Expression)角色:文法中的每一条规则都需要一个具体的非终结符表达式,非终结符表达式一般是文法中的运算符或者其他关键字,比如公式R=R1+R2中,“+"就是非终结符,解析“+”的解释器就是一个非终结符表达式。
  • 环境(Context)角色:这个角色的任务一般是用来存放文法中各个终结符所对应的具体值,比如R=R1+R2,我们给R1赋值100,给R2赋值200。这些信息需要存放到环境角色中,很多情况下我们使用Map来充当环境角色就足够了。
UML图

 适用场景:

  • 当有一个语言需要解释执行,并且你可将该语言中的句子表示为一个抽象语法树,可以使用解释器模式。而当存在以下情况时该模式效果最好
  • 该文法的类层次结构变得庞大而无法管理。此时语法分析程序生成器这样的工具是最好的选择。他们无需构建抽象语法树即可解释表达式,这样可以节省空间而且还可能节省时间。
  • 效率不是一个关键问题,最高效的解释器通常不是通过直接解释语法分析树实现的,而是首先将他们装换成另一种形式,例如,正则表达式通常被装换成状态机,即使在这种情况下,转换器仍可用解释器模式实现,该模式仍是有用的。
代码实现
 class Context
    {
        private int sum;
        public int Sum
        {
            get { return sum; }
            set { sum=value;}
        }
     
    }
   
    /// 解释器抽象类。
   
   abstract class AbstractExpreesion
    {
        public abstract void Interpret(Context context);
       
     
    }
    
    ///   解释器具体实现类
    
    class PlusExpression : AbstractExpreesion
    {
        public override void Interpret(Context context)
        {
            int sum = context.Sum;
            sum++;
            context.Sum = sum;
 
        }
    }
    
    ///   解释器具体实现类。 自减
    
    class MinusExpression : AbstractExpreesion
    {
        public override void Interpret(Context context)
        {
            int sum = context.Sum;
            sum--;
            context.Sum = sum;
 
        }
    }

测试
 class Interpreter{
        static void Main(string[] args){
            Context context = new Context();
            context.Sum = 10;
            List<AbstractExpreesion> list = new List<AbstractExpreesion>();
            //运行加法三次
            list.Add(new PlusExpression());
            list.Add(new PlusExpression());
            list.Add(new PlusExpression());
            //运行减法两次
            list.Add(new MinusExpression());
            list.Add(new MinusExpression());
            for (int i = 0; i < list.Count(); i++)
            {
                AbstractExpreesion expression = list[i];
                expression.Interpret(context);
            }
            Console.WriteLine(context.Sum);
            Console.ReadLine();
        }
    }



目录
相关文章
|
设计模式 移动开发 数据库
行为型设计模式10-解释器模式
行为型设计模式10-解释器模式
118 1
|
3月前
|
SQL 设计模式 C#
解释器模式
解释器模式是一种行为型设计模式,用于定义语言的文法表示并提供解释器处理语句或表达式。它将语法规则与解释逻辑分离,便于扩展和维护。适用于简单的语法规则、固定文法结构及重复使用的语法解释场景,如数学表达式求值、SQL解析和简单脚本语言。优点包括易于扩展新规则和分离语法逻辑,但复杂文法会导致类数量激增,维护困难。
50 2
|
6月前
|
设计模式 存储 缓存
Java设计模式 - 解释器模式(24)
Java设计模式 - 解释器模式(24)
|
10月前
|
设计模式 监控 Java
聊聊Java设计模式-解释器模式
解释器模式(Interpreter Design Pattern)指给定一个“语言”,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子。这里所指的“语言”是指使用规定格式和语法的代码。
109 4
聊聊Java设计模式-解释器模式
|
10月前
|
设计模式 SQL 自然语言处理
行为型 解释器模式
行为型 解释器模式
62 0
|
10月前
|
设计模式 uml C++
行为型 迭代器模式
行为型 迭代器模式
57 0
|
设计模式 算法 Java
设计模式-行为型模式:解释器模式
设计模式-行为型模式:解释器模式
101 0
|
并行计算 Java 编译器
教你精通Java语法之第十五章、Lambda表达式
Lambda表达式的优点很明显,在代码层次上来说,使代码变得非常的简洁。缺点也很明显,代码不易读。1. 代码简洁,开发迅速2. 方便函数式编程3. 非常容易进行并行计算4. Java 引入 Lambda,改善了集合操作1. 代码可读性变差2. 在非并行计算中,很多计算未必有传统的 for 性能要高3. 不容易进行调试。
85 0
|
设计模式 JavaScript 编译器
我学会了,解释器模式
解释器模式属于行为型模式,这个类型的设计模式总结出了 类、对象之间的经典交互方式,将类、对象的行为和使用解耦了,花式的去使用对象的行为来完成特定场景下的功能。
105 0
我学会了,解释器模式
|
设计模式 Java
Java设计模式 ->解释器模式
Java设计模式 ->解释器模式
99 0