理论 | 朴素贝叶斯模型算法研究与实例分析

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果。所以很受欢迎大家熟悉其原理和实现之后,采用机器学习sklearn包进行实现和优化。由于篇幅较长,采用理论理解、案例实现、sklearn优化三个部分进行学习。


理论 | 朴素贝叶斯模型算法研究与实例分析

( 白宁超 2018年8月31日17: 02:08)

导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果。所以很受欢迎,对于朴素贝叶斯的学习,本文首先介绍理论知识即朴素贝叶斯相关概念和公式推导,为了加深理解,采用一个维基百科上面性别分类例子进行形式化描述。然后通过编程实现朴素贝叶斯分类算法,并在屏蔽社区言论、垃圾邮件、个人广告中获取区域倾向等几个方面进行应用,包括创建数据集、数据预处理、词集模型和词袋模型、朴素贝叶斯模型训练和优化等。然后结合复旦大学新闻语料进行朴素贝叶斯的应用。最后,大家熟悉其原理和实现之后,采用机器学习sklearn包进行实现和优化。由于篇幅较长,采用理论理解、案例实现、sklearn优化三个部分进行学习。(本文原创,转载必须注明出处:朴素贝叶斯模型算法研究与实例分析)

朴素贝叶斯理论

朴素贝叶斯概述

朴素贝叶斯是一种构建分类器的简单方法。该分类器模型会给问题实例分配用特征值表示的类标签,类标签取自有限集合。所有朴素贝叶斯分类器都假定样本每个特征与其他特征都不相关。

特征独立理解的例子:如果一种水果其具有红,圆,直径大概3英寸等特征,该水果可以被判定为是苹果。尽管这些特征相互依赖或者有些特征由其他特征决定,然而朴素贝叶斯分类器认为这些属性在判定该水果是否为苹果的概率分布上独立的。

尽管是带着这些朴素思想和过于简单化的假设,但朴素贝叶斯分类器在很多复杂的现实情形中仍能够获取相当好的效果。朴素贝叶斯分类器的一个优势在于只需要根据少量的训练数据估计出必要的参数(变量的均值和方差)。

朴素贝叶斯模型

朴素贝叶斯方法是基于贝叶斯定理的一组有监督学习算法,即“简单”地假设每对特征之间相互独立。 给定一个类别gif.latex?small&space;y和一个从gif.latex?small&space;x_1gif.latex?small&space;x_n的相关的特征向量,贝叶斯定理阐述了以下关系:

gif.latex?dpi{100}&space;small&space;P(y

使用简单(naive)的假设-每对特征之间都相互独立:

gif.latex?dpi{100}&space;small&space;P(x

对于所有的 math: i ,这个关系式可以简化为

gif.latex?dpi{100}&space;small&space;P(y

由于在给定的输入中gif.latex?dpi{90}&space;small&space;P(x_ 是一个常量,我们使用下面的分类规则:

gif.latex?dpi{100}&space;small&space;P(y

我们可以使用最大后验概率(Maximum A Posteriori, MAP) 来估计 gif.latex?dpi{90}&space;small&space;P(y)gif.latex?dpi{90}&space;small&space;P(x_ ; 前者是训练集中类别 y 的相对频率。各种各样的的朴素贝叶斯分类器的差异大部分来自于处理 gif.latex?dpi{90}&space;small&space;P(x_ 分布时的所做的假设不同。尽管其假设过于简单,在很多实际情况下,朴素贝叶斯工作得很好,特别是文档分类和垃圾邮件过滤。相比于其他更复杂的方法,朴素贝叶斯学习器和分类器非常快。

朴素贝叶斯算法思想

假设有一个数据集,它由两类数据组成,数据分布如下图所示:



我们现在用 gif.latex?dpi{90}&space;small&space;p_1( 表示数据点 (x,y) 属于类别 1(图中用圆点表示的类别)的概率,用 gif.latex?dpi{90}&space;small&space;p_2( 表示数据点 (x,y) 属于类别 2(图中三角形表示的类别)的概率,那么对于一个新数据点 (x,y),可以用下面的规则来判断它的类别:

  • 如果gif.latex?dpi{100}&space;small&space;p_1,那么类别为1
  • 如果 gif.latex?dpi{100}&space;small&space;p_1 ,那么类别为2

也就是说,我们会选择高概率对应的类别。这就是贝叶斯决策理论的核心思想,即选择具有最高概率的决策。

朴素贝叶斯工作原理

提取所有文档中的词条并进行去重
获取文档的所有类别
计算每个类别中的文档数目
对每篇训练文档: 
    对每个类别: 
        如果词条出现在文档中-->增加该词条的计数值(for循环或者矩阵相加)
        增加所有词条的计数值(此类别下词条总数)
对每个类别: 
    对每个词条: 
        将该词条的数目除以总词条数目得到的条件概率(P(词条|类别))
返回该文档属于每个类别的条件概率(P(类别|文档的所有词条))

朴素贝叶斯算法流程

收集数据: 可以使用任何方法。
准备数据: 需要数值型或者布尔型数据。
分析数据: 有大量特征时,绘制特征作用不大,此时使用直方图效果更好。
训练算法: 计算不同的独立特征的条件概率。
测试算法: 计算错误率。
使用算法: 一个常见的朴素贝叶斯应用是文档分类。可以在任意的分类场景中使用朴素贝叶斯分类器,不一定非要是文本。

朴素贝叶斯优缺点


优点: 在数据较少的情况下仍然有效,可以处理多类别问题。
缺点: 对于输入数据的准备方式较为敏感。
适用数据类型: 标称型数据。

案例描述:形式化理解朴素贝叶斯性别分类

问题描述

通过一些测量的特征,包括身高、体重、脚的尺寸,判定一个人是男性还是女性。

训练数据

性别 身高(英尺) 体重(磅) 脚的尺寸(英寸)
6 180 12
5.92 190 11
5.58 170 12
5.92 165 10
5 100 6
5.5 150 8
5.42 130 7
5.75 150 9

假设训练集样本的特征满足高斯分布,得到下表:

性别 均值(身高) 方差(身高) 均值(体重) 方差(体重) 均值(脚的尺寸) 方差(脚的尺寸)
男性 5.855 3.5033e-02 176.25 1.2292e+02 11.25 9.1667e-01
女性 5.4175 9.7225e-02 132.5 5.5833e+02 7.5 1.6667e+00

我们认为两种类别是等概率的,也就是P(male)= P(female) = 0.5。在没有做辨识的情况下就做这样的假设并不是一个好的点子。但我们通过数据集中两类样本出现的频率来确定P(C),我们得到的结果也是一样的。

测试数据

以下给出一个待分类是男性还是女性的样本。

性别 身高(英尺) 体重(磅) 脚的尺寸(英尺)
sample 6 130 8

我们希望得到的是男性还是女性哪类的后验概率大。男性的后验概率通过下面式子来求取

gif.latex?dpi{100}&space;small&space;pos

女性的后验概率通过下面式子来求取

gif.latex?dpi{100}&space;small&space;pos

证据因子(通常是常数)用来对各类的后验概率之和进行归一化.

gif.latex?dpi{100}&space;small&space;evi

证据因子是一个常数(在正态分布中通常是正数),所以可以忽略。接下来我们来判定这样样本的性别。

gif.latex?dpi{100}&space;small&space;P(m

gif.latex?dpi{100}&space;small&space;p({
其中 gif.latex?dpi{100}&space;small&space;{di是训练集样本的正态分布参数. 注意,这里的值大于1也是允许的 – 这里是概率密度而不是概率,因为身高是一个连续的变量.

集样本的正态分布参数. 注意,这里的值大于1也是允许的 – 这里是概率密度而不是概率,因为身高是一个连续的变量.

gif.latex?dpi{100}&space;small&space;\&s

模型预测结果

由于女性后验概率的分子比较大,所以我们预计这个样本是女性。

参考文献

  1. scikit中文社区:http://sklearn.apachecn.org/cn/0.19.0/
  2. 中文维基百科:https://zh.wikipedia.org/wiki/
  3. 文本分类特征选择:https://www.cnblogs.com/june0507/p/7601001.html
  4. GitHub:https://github.com/BaiNingchao/MachineLearning-1
  5. 图书:《机器学习实战》
  6. 图书:《自然语言处理理论与实战》

完整代码下载

源码请进【机器学习和自然语言QQ群:436303759】文件下载:



作者声明

本文版权归作者白宁超所有,本文原创,旨在学术和科研使用。文章同步如下:

相关文章
|
16天前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
60 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
13天前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
30 4
|
11天前
|
算法 程序员 Python
程序员必看!Python复杂度分析全攻略,让你的算法设计既快又省内存!
在编程领域,Python以简洁的语法和强大的库支持成为众多程序员的首选语言。然而,性能优化仍是挑战。本文将带你深入了解Python算法的复杂度分析,从时间与空间复杂度入手,分享四大最佳实践:选择合适算法、优化实现、利用Python特性减少空间消耗及定期评估调整,助你写出高效且节省内存的代码,轻松应对各种编程挑战。
22 1
|
1月前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
|
17天前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
20 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
|
1月前
|
存储 自然语言处理 算法
【算法精讲系列】MGTE系列模型,RAG实施中的重要模型
检索增强生成(RAG)结合检索与生成技术,利用外部知识库提升大模型的回答准确性与丰富性。RAG的关键组件包括文本表示模型和排序模型,前者计算文本向量表示,后者进行精细排序。阿里巴巴通义实验室推出的GTE-Multilingual系列模型,具备高性能、长文档支持、多语言处理及弹性向量表示等特性,显著提升了RAG系统的检索与排序效果。该系列模型已在多个数据集上展示出优越性能,并支持多语言和长文本处理,适用于各种复杂应用场景。
|
3天前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
1月前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
1月前
|
资源调度 算法
基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。
|
1月前
|
算法
基于SIR模型的疫情发展趋势预测算法matlab仿真
该程序基于SIR模型预测疫情发展趋势,通过MATLAB 2022a版实现病例增长拟合分析,比较疫情防控力度。使用SIR微分方程模型拟合疫情发展过程,优化参数并求解微分方程组以预测易感者(S)、感染者(I)和移除者(R)的数量变化。![]该模型将总人群分为S、I、R三部分,通过解析或数值求解微分方程组预测疫情趋势。
下一篇
无影云桌面