Hadoop2.6.0运行mapreduce之Uber模式验证

简介: 版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/beliefer/article/details/51160494 前言在有些情况下,运行于Hadoop集群上的一些mapreduce作业本身的数据量并不是很大,如果此时的任务分片很多,那么为每个map任务或者reduce任务频繁创建Container,势必会增加Hadoop集群的资源消耗,并且因为创建分配Container本身的开销,还会增加这些任务的运行时延。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/beliefer/article/details/51160494

前言

在有些情况下,运行于Hadoop集群上的一些mapreduce作业本身的数据量并不是很大,如果此时的任务分片很多,那么为每个map任务或者reduce任务频繁创建Container,势必会增加Hadoop集群的资源消耗,并且因为创建分配Container本身的开销,还会增加这些任务的运行时延。如果能将这些小任务都放入少量的Container中执行,将会解决这些问题。好在Hadoop本身已经提供了这种功能,只需要我们理解其原理,并应用它。

Uber运行模式就是解决此类问题的现成解决方案。本文旨在通过测试手段验证Uber运行模式的效果,在正式的生成环境下,还需要大家具体情况具体对待。

Uber运行模式

Uber运行模式对小作业进行优化,不会给每个任务分别申请分配Container资源,这些小任务将统一在一个Container中按照先执行map任务后执行reduce任务的顺序串行执行。那么什么样的任务,mapreduce框架会认为它是小任务呢?

  • map任务的数量不大于mapreduce.job.ubertask.maxmaps参数(默认值是9)的值;
  • reduce任务的数量不大于mapreduce.job.ubertask.maxreduces参数(默认值是1)的值;
  • 输入文件大小不大于mapreduce.job.ubertask.maxbytes参数(默认为1个Block的字节大小)的值;
  • map任务和reduce任务需要的资源量不能大于MRAppMaster(mapreduce作业的ApplicationMaster)可用的资源总量;
我们可以使用在《 Hadoop2.6.0配置参数查看小工具》一文中制作的小工具,查看 Uber相关参数及其默认值:

上面显示的参数mapreduce.job.ubertask.enable用来控制是否开启 Uber运行模式,默认为false。

优化

为简单起见,我们还是以WordCount例子展开。输入数据及输出结果目录的构造过程可以参照《 Hadoop2.6.0的FileInputFormat的任务切分原理分析》一文,本文不再赘述。

限制任务划分数量

我们知道WordCount例子中的reduce任务的数量通过Job.setNumReduceTasks(int)方法已经设置为1,因此满足mapreduce.job.ubertask.maxreduces参数的限制。所以我们首先控制下map任务的数量,我们通过设置mapreduce.input.fileinputformat.split.maxsize参数来限制。看看在满足小任务前提,但是不开启 Uber运行模式时的执行情况。执行命令如下:
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar wordcount -D mapreduce.input.fileinputformat.split.maxsize = 30 /wordcount/input /wordcount/output/result1
观察执行结果,可以看到没有启用Uber模式,作业划分为6个分片,如下图:

还可以看到一共是6个map任务和1个reduce任务,如下图:

我在任务执行过程中,在web界面对于分配的Container进行截图,可以看到一共分配了7个Container:

如果阅读了《 Hadoop2.6.0的FileInputFormat的任务切分原理分析》一文,你会知道输入源/wordcount/input目录下2个文件的大小总和为177字节,为了这么小的数据量和简单的WordCount而分配这么多资源的确很不划算。

开启Uber模式


现在我们开启mapreduce.job.ubertask.enable参数并使用Uber运行模式,命令如下:
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar wordcount -D mapreduce.input.fileinputformat.split.maxsize = 30 -D mapreduce.job.ubertask.enable = true /wordcount/input /wordcount/output/result2

然后观察执行结果,可以看到已经启用了Uber模式,如下图:

但依然是6个map任务和1个reduce任务,但是之前的数据本地map任务= 6一行信息已经变为当地的其他maptasks=6。此外还增加了TOTAL_LAUNCHED_UBERTASKS、NUM_UBER_SUBMAPS、NUM_UBER_SUBREDUCES等信息,如下图所示:

以下列出这几个信息的含义:
输出字段 描述
TOTAL_LAUNCHED_UBERTASKS 启动的Uber任务数
NUM_UBER_SUBMAPS Uber任务中的map任务数
NUM_UBER_SUBREDUCES Uber中reduce任务数
因此我们知道这7个任务都在Uber模式下运行,其中包含6个map任务和1个reduce任务。
即便如此,有人依然会担心真正分配了多少Container资源,请看我在web界面的截图:

其它测试

由于我主动控制了分片大小,导致分片数量是6,这小于mapreduce.job.ubertask.maxmaps参数的默认值9。按照之前的介绍,当map任务数量大于9时,那么这个作业就不会被认为小任务。所以我们先将分片大小调整为20字节,使得map任务的数量刚好等于9,然后执行以下命令:
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar wordcount -D mapreduce.input.fileinputformat.split.maxsize = 20 -D mapreduce.job.ubertask.enable = true /wordcount/input /wordcount/output/result3
任务划分相关的信息截图如下:

。我们看到的确将输入数据划分为9份了其它信息如下:

我们看到一共10个Uber模式运行的任务,其中包括9个map任务和1个reduce任务。
最后,我们再将分片大小调整为19字节,使得map任务数量等于10,然后执行以下命令:
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar wordcount -D mapreduce.input.fileinputformat.split.maxsize = 19 -D mapreduce.job.ubertask.enable = true /wordcount/input /wordcount/output/result4
任务划分相关的信息截图如下:

。我们看到的确将输入数据划分为10份了其它信息如下:

可以看到又重新显示了数据的本地map任务
此外,还可以通过调整reduce任务数量或者输入数据大小等方式,使得Uber失效,有兴趣的同学可以自行测试。

源码分析

本文的最后,我们从源码实现的角度来具体分析下Uber运行机制。有经验的Hadoop工程师,想必知道当mapreduce任务提交给ResourceManager后,由RM负责向NodeManger通信启动一个Container用于执行MRAppMaster。启动MRAppMaster实际也是通过调用其main方法,最终会调用MRAppMaster实例的serviceStart方法,其实现如下:
  protected void serviceStart() throws Exception {

    // 省略无关代码
    job = createJob(getConfig(), forcedState, shutDownMessage);

    // 省略无关代码
    if (!errorHappenedShutDown) {
      JobEvent initJobEvent = new JobEvent(job.getID(), JobEventType.JOB_INIT);

      jobEventDispatcher.handle(initJobEvent);

      // 省略无关代码

      if (job.isUber()) {
        speculatorEventDispatcher.disableSpeculation();
      } else {
        dispatcher.getEventHandler().handle(
            new SpeculatorEvent(job.getID(), clock.getTime()));
      }

    }

serviceStart方法的执行步骤如下:
  1. 调用createJob方法创建JobImpl实例。
  2. 发送JOB_INIT事件,然后处理此事件。
  3. 使用Uber运行模式的一个附加动作——即一旦满足Uber运行的四个条件,那么将不会进行推断执行优化。
createJob方法的代码实现如下:
  protected Job createJob(Configuration conf, JobStateInternal forcedState, 
      String diagnostic) {

    // create single job
    Job newJob =
        new JobImpl(jobId, appAttemptID, conf, dispatcher.getEventHandler(),
            taskAttemptListener, jobTokenSecretManager, jobCredentials, clock,
            completedTasksFromPreviousRun, metrics,
            committer, newApiCommitter,
            currentUser.getUserName(), appSubmitTime, amInfos, context, 
            forcedState, diagnostic);
    ((RunningAppContext) context).jobs.put(newJob.getID(), newJob);

    dispatcher.register(JobFinishEvent.Type.class,
        createJobFinishEventHandler());     
    return newJob;
  }

从以上代码可以看到创建了一个JobImpl对象,此对象自身维护了一个状态机( 有关状态机转换的实现原理可以参阅《 Hadoop2.6.0中YARN底层状态机实现分析 》一文的内容),用于在接收到事件之后进行状态转移并触发一些动作。JobImpl新建后的状态forcedState是JobStateInternal.NEW。最后将此JobImpl对象放入AppContext接口的实现类RunningAppContext的类型为Map<JobId,工作>的缓存上下文中。
JobEventDispatcher的handle方法用来处理JobEvent。之前说到serviceStart方法主动创建了一个类型是JobEventType.JOB_INIT的JobEvent,并且交由JobEventDispatcher的handle方法处理。handle方法的实现如下:
  private class JobEventDispatcher implements EventHandler<JobEvent> {
    @SuppressWarnings("unchecked")
    @Override
    public void handle(JobEvent event) {
      ((EventHandler<JobEvent>)context.getJob(event.getJobId())).handle(event);
    }
  }

处理方法从AppContext的实现类RunningAppContext中获取JobImpl对象,代码如下:
    @Override
    public Job getJob(JobId jobID) {
      return jobs.get(jobID);
    }
最后调用JobImpl实例的句柄方法,其实现如下:
  public void handle(JobEvent event) {
    if (LOG.isDebugEnabled()) {
      LOG.debug("Processing " + event.getJobId() + " of type "
          + event.getType());
    }
    try {
      writeLock.lock();
      JobStateInternal oldState = getInternalState();
      try {
         getStateMachine().doTransition(event.getType(), event);
      } catch (InvalidStateTransitonException e) {
        LOG.error("Can't handle this event at current state", e);
        addDiagnostic("Invalid event " + event.getType() + 
            " on Job " + this.jobId);
        eventHandler.handle(new JobEvent(this.jobId,
            JobEventType.INTERNAL_ERROR));
      }
      //notify the eventhandler of state change
      if (oldState != getInternalState()) {
        LOG.info(jobId + "Job Transitioned from " + oldState + " to "
                 + getInternalState());
        rememberLastNonFinalState(oldState);
      }
    }
    
    finally {
      writeLock.unlock();
    }
  }
处理方法的处理步骤如下:
  1. 获取修改JobImpl实例的锁;
  2. 获取JobImpl实例目前所处的状态
  3. 状态机状态转换;
  4. 释放修改JobImpl实例的锁。
getInternalState方法用于获取JobImpl实例当前的状态,其实现如下:
  @Private
  public JobStateInternal getInternalState() {
    readLock.lock();
    try {
      if(forcedState != null) {
        return forcedState;
      }
     return getStateMachine().getCurrentState();
    } finally {
      readLock.unlock();
    }
  }
我们之前介绍过,在创建JobImpl实例时,其forcedState字段应当是JobStateInternal.NEW。
JobImpl状态机转移时,处理的JobEvent的类型是JobEventType.JOB_INIT,因此经过状态机转换最终会调用InitTransition的transition方法。有关状态机转换的实现原理可以参阅《 Hadoop2.6.0中YARN底层状态机实现分析》一文的内容。
InitTransition的transition方法处理Uber运行模式的关键代码是
    @Override
    public JobStateInternal transition(JobImpl job, JobEvent event) {
        // 省略无关代码
        job.makeUberDecision(inputLength);
        
        // 省略无关代码
    }
最后我们看看JobImpl实例的makeUberDecision方法的实现:
  private void makeUberDecision(long dataInputLength) {
    //FIXME:  need new memory criterion for uber-decision (oops, too late here;
    // until AM-resizing supported,
    // must depend on job client to pass fat-slot needs)
    // these are no longer "system" settings, necessarily; user may override
    int sysMaxMaps = conf.getInt(MRJobConfig.JOB_UBERTASK_MAXMAPS, 9);

    int sysMaxReduces = conf.getInt(MRJobConfig.JOB_UBERTASK_MAXREDUCES, 1);

    long sysMaxBytes = conf.getLong(MRJobConfig.JOB_UBERTASK_MAXBYTES,
        fs.getDefaultBlockSize(this.remoteJobSubmitDir)); // FIXME: this is wrong; get FS from
                                   // [File?]InputFormat and default block size
                                   // from that

    long sysMemSizeForUberSlot =
        conf.getInt(MRJobConfig.MR_AM_VMEM_MB,
            MRJobConfig.DEFAULT_MR_AM_VMEM_MB);

    long sysCPUSizeForUberSlot =
        conf.getInt(MRJobConfig.MR_AM_CPU_VCORES,
            MRJobConfig.DEFAULT_MR_AM_CPU_VCORES);

    boolean uberEnabled =
        conf.getBoolean(MRJobConfig.JOB_UBERTASK_ENABLE, false);
    boolean smallNumMapTasks = (numMapTasks <= sysMaxMaps);
    boolean smallNumReduceTasks = (numReduceTasks <= sysMaxReduces);
    boolean smallInput = (dataInputLength <= sysMaxBytes);
    // ignoring overhead due to UberAM and statics as negligible here:
    long requiredMapMB = conf.getLong(MRJobConfig.MAP_MEMORY_MB, 0);
    long requiredReduceMB = conf.getLong(MRJobConfig.REDUCE_MEMORY_MB, 0);
    long requiredMB = Math.max(requiredMapMB, requiredReduceMB);
    int requiredMapCores = conf.getInt(
            MRJobConfig.MAP_CPU_VCORES, 
            MRJobConfig.DEFAULT_MAP_CPU_VCORES);
    int requiredReduceCores = conf.getInt(
            MRJobConfig.REDUCE_CPU_VCORES, 
            MRJobConfig.DEFAULT_REDUCE_CPU_VCORES);
    int requiredCores = Math.max(requiredMapCores, requiredReduceCores);    
    if (numReduceTasks == 0) {
      requiredMB = requiredMapMB;
      requiredCores = requiredMapCores;
    }
    boolean smallMemory =
        (requiredMB <= sysMemSizeForUberSlot)
        || (sysMemSizeForUberSlot == JobConf.DISABLED_MEMORY_LIMIT);
    
    boolean smallCpu = requiredCores <= sysCPUSizeForUberSlot;
    boolean notChainJob = !isChainJob(conf);

    // User has overall veto power over uberization, or user can modify
    // limits (overriding system settings and potentially shooting
    // themselves in the head).  Note that ChainMapper/Reducer are
    // fundamentally incompatible with MR-1220; they employ a blocking
    // queue between the maps/reduces and thus require parallel execution,
    // while "uber-AM" (MR AM + LocalContainerLauncher) loops over tasks
    // and thus requires sequential execution.
    isUber = uberEnabled && smallNumMapTasks && smallNumReduceTasks
        && smallInput && smallMemory && smallCpu 
        && notChainJob;

    if (isUber) {
      LOG.info("Uberizing job " + jobId + ": " + numMapTasks + "m+"
          + numReduceTasks + "r tasks (" + dataInputLength
          + " input bytes) will run sequentially on single node.");

      // make sure reduces are scheduled only after all map are completed
      conf.setFloat(MRJobConfig.COMPLETED_MAPS_FOR_REDUCE_SLOWSTART,
                        1.0f);
      // uber-subtask attempts all get launched on same node; if one fails,
      // probably should retry elsewhere, i.e., move entire uber-AM:  ergo,
      // limit attempts to 1 (or at most 2?  probably not...)
      conf.setInt(MRJobConfig.MAP_MAX_ATTEMPTS, 1);
      conf.setInt(MRJobConfig.REDUCE_MAX_ATTEMPTS, 1);

      // disable speculation
      conf.setBoolean(MRJobConfig.MAP_SPECULATIVE, false);
      conf.setBoolean(MRJobConfig.REDUCE_SPECULATIVE, false);
    } else {
      StringBuilder msg = new StringBuilder();
      msg.append("Not uberizing ").append(jobId).append(" because:");
      if (!uberEnabled)
        msg.append(" not enabled;");
      if (!smallNumMapTasks)
        msg.append(" too many maps;");
      if (!smallNumReduceTasks)
        msg.append(" too many reduces;");
      if (!smallInput)
        msg.append(" too much input;");
      if (!smallCpu)
        msg.append(" too much CPU;");
      if (!smallMemory)
        msg.append(" too much RAM;");
      if (!notChainJob)
        msg.append(" chainjob;");
      LOG.info(msg.toString());
    }
  }
如果你认真阅读以上代码的实现,就知道这正是我在本文一开始说的Uber运行模式判断mapreduce作业是否采用Uber模式执行的4个条件,缺一不可。一旦判定为Uber运行模式,那么还告诉我们以下几点:
  1. 设置当map任务全部运行结束后才开始reduce任务(参数mapreduce.job.reduce.slowstart.completedmaps设置为1.0)。
  2. 将当前Job的最大map任务尝试执行次数(参数mapreduce.map.maxattempts)和最大reduce任务尝试次数(参数mapreduce.reduce.maxattempts)都设置为1。
  3. 取消当前Job的map任务的推断执行(参数mapreduce.map.speculative设置为false)和reduce任务的推断执行(参数mapreduce.reduce.speculative设置为false)。

后记:个人总结整理的《深入理解Spark:核心思想与源码分析》一书现在已经正式出版上市,目前京东、当当、天猫等网站均有销售,欢迎感兴趣的同学购买。


京东:http://item.jd.com/11846120.html 

当当:http://product.dangdang.com/23838168.html 


相关文章
|
2月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
184 6
|
2月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
78 2
|
16天前
|
数据采集 分布式计算 Hadoop
使用Hadoop MapReduce进行大规模数据爬取
使用Hadoop MapReduce进行大规模数据爬取
|
1月前
|
分布式计算 资源调度 Hadoop
【赵渝强老师】部署Hadoop的本地模式
本文介绍了Hadoop的目录结构及本地模式部署方法,包括解压安装、设置环境变量、配置Hadoop参数等步骤,并通过一个简单的WordCount程序示例,演示了如何在本地模式下运行MapReduce任务。
|
2月前
|
SQL 存储 分布式计算
Hadoop-16-Hive HiveServer2 HS2 允许客户端远程执行HiveHQL HCatalog 集群规划 实机配置运行
Hadoop-16-Hive HiveServer2 HS2 允许客户端远程执行HiveHQL HCatalog 集群规划 实机配置运行
49 3
|
2月前
|
分布式计算 资源调度 Hadoop
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
109 3
|
2月前
|
SQL 存储 数据管理
Hadoop-15-Hive 元数据管理与存储 Metadata 内嵌模式 本地模式 远程模式 集群规划配置 启动服务 3节点云服务器实测
Hadoop-15-Hive 元数据管理与存储 Metadata 内嵌模式 本地模式 远程模式 集群规划配置 启动服务 3节点云服务器实测
64 2
|
2月前
|
分布式计算 资源调度 数据可视化
Hadoop-06-Hadoop集群 历史服务器配置 超详细 执行任务记录 JobHistoryServer MapReduce执行记录 日志聚合结果可视化查看
Hadoop-06-Hadoop集群 历史服务器配置 超详细 执行任务记录 JobHistoryServer MapReduce执行记录 日志聚合结果可视化查看
50 1
|
2月前
|
分布式计算 资源调度 Hadoop
Hadoop-05-Hadoop集群 集群WordCount 超详细 真正的分布式计算 上传HDFS MapReduce计算 YRAN查看任务 上传计算下载查看
Hadoop-05-Hadoop集群 集群WordCount 超详细 真正的分布式计算 上传HDFS MapReduce计算 YRAN查看任务 上传计算下载查看
56 1
|
2月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
104 0