Spark2.1.0之初体验

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/beliefer/article/details/80042366        在《Spark2.1.0之运行环境准备》一文中,已经介绍了如何准备好基本的Spark运行环境,现在是时候实践一下,以便于在使用过程中提升读者对于Spark最直接的感触!本文通过Spark的基本使用,让读者对Spark能有初步的认识,便于引导读者逐步深入学习。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/beliefer/article/details/80042366

       在《Spark2.1.0之运行环境准备》一文中,已经介绍了如何准备好基本的Spark运行环境,现在是时候实践一下,以便于在使用过程中提升读者对于Spark最直接的感触!本文通过Spark的基本使用,让读者对Spark能有初步的认识,便于引导读者逐步深入学习。

运行spark-shell

    在《Spark2.1.0之运行环境准备》一文曾经简单运行了spark-shell,并用下图进行了展示(此处再次展示此图)。


图1    执行spark-shell进入Scala命令行

图1中显示了很多信息,这里进行一些说明:

  • 在安装完Spark 2.1.0后,如果没有明确指定log4j的配置,那么Spark会使用core模块的org/apache/spark/目录下的log4j-defaults.properties作为log4j的默认配置。log4j-defaults.properties指定的Spark日志级别为WARN。用户可以到Spark安装目录的conf文件夹下从log4j.properties.template复制一份log4j.properties文件,并在其中增加自己想要的配置。
  • 除了指定log4j.properties文件外,还可以在spark-shell命令行中通过sc.setLogLevel(newLevel)语句指定日志级别。
  • SparkContext的Web UI的地址是:http://192.168.0.106:4040。192.168.0.106是笔者安装Spark的机器的ip地址,4040是SparkContext的Web UI的默认监听端口。
  • 指定的部署模式(即master)为local[*]。当前应用(Application)的ID为local-1497084620457。
  • 可以在spark-shell命令行通过sc使用SparkContext,通过spark使用SparkSession。sc和spark实际分别是SparkContext和SparkSession在Spark REPL中的变量名,具体细节已在《Spark2.1.0之剖析spark-shell》一文有过分析。

    由于Spark core的默认日志级别是WARN,所以看到的信息不是很多。现在我们将Spark安装目录的conf文件夹下的log4j.properties.template以如下命令复制出一份:

cp log4j.properties.template log4j.properties

并将log4j.properties中的log4j.logger.org.apache.spark.repl.Main=WARN修改为log4j.logger.org.apache.spark.repl.Main=INFO,然后我们再次运行spark-shell,将打印出更丰富的信息,如图2所示。


图2  Spark启动过程打印的部分信息

从图2展示的启动日志中我们可以看到SecurityManager、SparkEnv、BlockManagerMasterEndpoint、DiskBlockManager、MemoryStore、SparkUI、Executor、NettyBlockTransferService、BlockManager、BlockManagerMaster等信息。它们是做什么的?刚刚接触Spark的读者只需要知道这些信息即可,具体内容将在后边的博文给出。

执行word count

      这一节,我们通过word count这个耳熟能详的例子来感受下Spark任务的执行过程。启动spark-shell后,会打开Scala命令行,然后按照以下步骤输入脚本:

步骤1    

      输入val lines =sc.textFile("../README.md", 2),以Spark安装目录下的README.md文件的内容作为word count例子的数据源,执行结果如图3所示。

图3   步骤1执行结果

图3告诉我们lines的实际类型是MapPartitionsRDD。

步骤2

       textFile方法对文本文件是逐行读取的,我们需要输入val words =lines.flatMap(line => line.split(" ")),将每行文本按照空格分隔以得到每个单词,执行结果如图4所示。


图4   步骤2执行结果

图4告诉我们lines在经过flatMap方法的转换后得到的words的实际类型也是MapPartitionsRDD。

步骤3

     对于得到的每个单词,通过输入val ones = words.map(w => (w,1)),将每个单词的计数初始化为1,执行结果如图5所示。

图5   步骤3执行结果

图5告诉我们words在经过map方法的转换后得到的ones的实际类型也是MapPartitionsRDD。

步骤4

    输入val counts = ones.reduceByKey(_ + _),对单词进行计数值的聚合,执行结果如图6所示。


图6   步骤4执行结果

图6告诉我们ones在经过reduceByKey方法的转换后得到的counts的实际类型是ShuffledRDD。

步骤5

       输入counts.foreach(println),将每个单词的计数值打印出来,作业的执行过程如图7和图8所示。作业的输出结果如图9所示。


图7   步骤5执行过程第一部分


图8  步骤5执行过程第二部分

图7和图8展示了很多作业提交、执行的信息,这里挑选关键的内容进行介绍:

  • SparkContext为提交的Job生成的ID是0。
  • 一共有四个RDD,被划分为ResultStage和ShuffleMapStage。ShuffleMapStage的ID为0,尝试号为0。ResultStage的ID为1,尝试号也为0。在Spark中,如果Stage没有执行完成,就会进行多次重试。Stage无论是首次执行还是重试都被视为是一次Stage尝试(Stage Attempt),每次Attempt都有一个唯一的尝试号(AttemptNumber)。
  • 由于Job有两个分区,所以ShuffleMapStage和ResultStage都有两个Task被提交。每个Task也会有多次尝试,因而也有属于Task的尝试号。从图中看出ShuffleMapStage中的两个Task和ResultStage中的两个Task的尝试号也都是0。
  • HadoopRDD则用于读取文件内容。

图9  步骤5输出结果

图9展示了单词计数的输出结果和最后打印的任务结束的日志信息。

    笔者在本文介绍的word count例子是以SparkContext的API来实现的,读者朋友们也可以选择在spark-shell中通过运用SparkSession的API来实现。

有了对Spark的初次体验,下面可以来分析下spark-shell的实现原理了,请看——《Spark2.1.0之剖析spark-shell

关于《Spark内核设计的艺术 架构设计与实现

经过近一年的准备,基于Spark2.1.0版本的《 Spark内核设计的艺术 架构设计与实现》一书现已出版发行,图书如图:


纸质版售卖链接如下:
电子版售卖链接如下:
相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
16天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
48 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
1月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
59 0
|
1月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
40 0
|
1月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
82 0
|
17天前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
45 6
|
15天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
59 2
|
16天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
56 1
|
17天前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
48 1