Linux内核-协议栈-初始化流程分析

简介: 版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/feilengcui008/article/details/49509993 本文主要针对Linux-3.
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/feilengcui008/article/details/49509993

本文主要针对Linux-3.19.3版本的内核简单分析内核协议栈初始化涉及到的主要步骤和关键函数,不针对协议的解析以及数据包的处理流程做具体分析,后续有机会再详细分析


1.准备

  • Linux内核协议栈本身构建在虚拟文件系统之上,所以对Linux VFS不太了解的可以参考内核源码根目录下Documentation/filesystems/vfs.txt,另外,socket接口层,协议层,设备层的许多数据结构涉及到内存管理,所以对基本虚拟内存管理,slab缓存,页高速缓存不太了解的也可以查阅相关文档。

  • 源码涉及的主要文件位于net/socket.c,net/core,include/linux/net*. 基本上整个初始化过程主要与net,net_namespace,/proc,/proc/sys相关结构的初始化和文件的建立,主要使用register_pernet_subsystem钩子注册和调用各种操作.init和.exit


2.开始

开始分析前,这里有些小技巧可以快速定位到主要的初始化函数,在分析其他子系统源码时也可以采用这个技巧

grep _initcall socket.c
find ./core/ -name "*.c" |xargs cat | grep _initcall
grep net_inuse_init tags

这里写图片描述
这里写图片描述

这里*__initcall宏是设置初始化函数位于内核代码段.initcall#id.init的位置其中id代表优先级level,小的一般初始化靠前,定义在include/linux/init.h,使用gcc的attribute扩展。而各个level的初始化函数的调用流程基本如下:

start_kernel -> rest_init -> kernel_init内核线程 -> kernel_init_freeable -> do_basic_setup -> do_initcalls -> do_initcall_level -> do_one_initcall -> *(initcall_t)

这里写图片描述


3.详细分析

  • 可以看到pure_initcall(net_ns_init)位于0的初始化level,基本不依赖其他的初始化子系统,所以从这个开始
//core/net_namespace.c
//基本上这个函数主要的作用是初始化net结构init_net的一些数据,比如namespace相关,并且调用注册的pernet operations的init钩子针对net进行各自需求的初始化
pure_initcall(net_ns_init);
static int __init net_ns_init(void)
{
    struct net_generic *ng;
    //net namespace相关
#ifdef CONFIG_NET_NS
    //分配slab缓存
    net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),SMP_CACHE_BYTES,SLAB_PANIC, NULL);

    /* Create workqueue for cleanup */
    netns_wq = create_singlethread_workqueue("netns");
    if (!netns_wq)
        panic("Could not create netns workq");
#endif
    ng = net_alloc_generic();
    if (!ng)
        panic("Could not allocate generic netns");

    rcu_assign_pointer(init_net.gen, ng);
    mutex_lock(&net_mutex);
    //初始化net namespace相关的对象, 传入初始的namespace init_user_ns
    //设置net结构的初始namespace
    //对每个pernet_list中注册的pernet operation,调用其初始化net中的对应数据对象
    if (setup_net(&init_net, &init_user_ns))
        panic("Could not setup the initial network namespace");

    rtnl_lock();
    //加入初始net结构的list中
    list_add_tail_rcu(&init_net.list, &net_namespace_list);
    rtnl_unlock();
    mutex_unlock(&net_mutex);
    //加入pernet_list链表,并且调用pernet operation的init函数初始化net 
    register_pernet_subsys(&net_ns_ops);
    return 0;
}
  • 下面分析core_init(sock_init):
//socket.c
//在.initcall1.init代码段注册,以便内核启动时do_initcalls中调用
//从而注册socket filesystem 
core_initcall(sock_init);   /* early initcall */

进入core_init(sock_init):

static int __init sock_init(void)
{
    int err;
    //sysctl 支持
    err = net_sysctl_init();
    if (err)
        goto out;

    //初始化skbuff_head_cache 和 skbuff_clone_cache的slab缓存区
    skb_init();

    //与vfs挂接,为sock inode分配slab缓存
    init_inodecache();

    //注册socket 文件系统
    err = register_filesystem(&sock_fs_type);
    if (err)
        goto out_fs;

    //通过kern_mount内核层接口调用mount系统调用,最终调用
    //fs_type->mount 而socket filesystem 使用mount_pesudo伪挂载
    sock_mnt = kern_mount(&sock_fs_type);
    if (IS_ERR(sock_mnt)) {
        err = PTR_ERR(sock_mnt);
        goto out_mount;
    }

    //协议与设备相关的数据结构等初始化在后续的各子模块subsys_init操作中
    /* The real protocol initialization is performed in later initcalls.
     */

    //netfilter初始化 
#ifdef CONFIG_NETFILTER
    err = netfilter_init();
    if (err)
        goto out;
#endif
/*省略部分*/
}
  • core_init(net_inuse_init)
//core/sock.c
//主要功能是为net分配inuse的percpu标识
core_initcall(net_inuse_init);
static int __net_init sock_inuse_init_net(struct net *net)
{
    net->core.inuse = alloc_percpu(struct prot_inuse);
    return net->core.inuse ? 0 : -ENOMEM;
}
static void __net_exit sock_inuse_exit_net(struct net *net)
{
    free_percpu(net->core.inuse);
}
static struct pernet_operations net_inuse_ops = {
    .init = sock_inuse_init_net,
    .exit = sock_inuse_exit_net,
};
static __init int net_inuse_init(void)
{
    if (register_pernet_subsys(&net_inuse_ops))
        panic("Cannot initialize net inuse counters");
    return 0;
}
  • core_init(netpoll_init)
//core/netpoll.c
//主要功能就是把预留的sk_buffer poll初始化成队列
core_initcall(netpoll_init);
static int __init netpoll_init(void)
{
    skb_queue_head_init(&skb_pool);
    return 0;
}

这里写图片描述

  • subsys_initcall(proto_init)
//core/sock.c
//涉及的操作主要是在/proc/net域下建立protocols文件,注册相关文件操作函数
subsys_initcall(proto_init);
// /proc/net/protocols支持的文件操作 
static const struct file_operations proto_seq_fops = {
    .owner      = THIS_MODULE,
    .open       = proto_seq_open, //打开
    .read       = seq_read, //读
    .llseek     = seq_lseek,//seek
    .release    = seq_release_net,
};
static __net_init int proto_init_net(struct net *net)
{
    //创建/proc/net/protocols
    if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
        return -ENOMEM;
    return 0;
}
static __net_exit void proto_exit_net(struct net *net)
{
    remove_proc_entry("protocols", net->proc_net);
}
static __net_initdata struct pernet_operations proto_net_ops = {
    .init = proto_init_net,
    .exit = proto_exit_net,
};
//注册 pernet_operations, 并用.init钩子初始化net,此处即创建proc相关文件
static int __init proto_init(void)
{
    return register_pernet_subsys(&proto_net_ops);
}
  • subsys_initcall(net_dev_init)
//core/dev.c 
//基本上是建立net device在/proc,/sys相关的数据结构,并且开启网卡收发中断
//初始化net device
static int __init net_dev_init(void)
{
    int i, rc = -ENOMEM;
    BUG_ON(!dev_boot_phase);
    //主要也是在/proc/net/下建立相应的属性文件,如dev网卡信息文件
    if (dev_proc_init())
        goto out;
    //注册/sys文件系统,添加相关属性项
    //注册网络内核对象namespace相关的一些操作
    //注册net interface(dev)到 /sys/class/net 
    if (netdev_kobject_init())
        goto out;
    INIT_LIST_HEAD(&ptype_all);
    for (i = 0; i < PTYPE_HASH_SIZE; i++)
        INIT_LIST_HEAD(&ptype_base[i]);
    INIT_LIST_HEAD(&offload_base);
    //注册并调用针对每个net的设备初始化操作
    if (register_pernet_subsys(&netdev_net_ops))
        goto out;
    //对每个cpu,初始化数据包处理相关队列
    for_each_possible_cpu(i) {
        struct softnet_data *sd = &per_cpu(softnet_data, i);
        //入
        skb_queue_head_init(&sd->input_pkt_queue);
        skb_queue_head_init(&sd->process_queue);
        INIT_LIST_HEAD(&sd->poll_list);
        //出
        sd->output_queue_tailp = &sd->output_queue;
#ifdef CONFIG_RPS
        sd->csd.func = rps_trigger_softirq;
        sd->csd.info = sd;
        sd->cpu = i;
#endif
        sd->backlog.poll = process_backlog;
        sd->backlog.weight = weight_p;
    }
    //只在boot phase调用一次, 防止重复调用
    dev_boot_phase = 0;

    /* The loopback device is special if any other network devices
     * is present in a network namespace the loopback device must
     * be present. Since we now dynamically allocate and free the
     * loopback device ensure this invariant is maintained by
     * keeping the loopback device as the first device on the
     * list of network devices.  Ensuring the loopback devices
     * is the first device that appears and the last network device
     * that disappears.
     */
    //回环设备的建立与初始化
    if (register_pernet_device(&loopback_net_ops))
        goto out;

    //退出的通用操作
    if (register_pernet_device(&default_device_ops))
        goto out;

    //开启收发队列的中断
    open_softirq(NET_TX_SOFTIRQ, net_tx_action);
    open_softirq(NET_RX_SOFTIRQ, net_rx_action);

    hotcpu_notifier(dev_cpu_callback, 0);
    //destination cache related?
    dst_init();
    rc = 0;
out:
    return rc;
}
  • fs_initcall(sysctl_core_init)
//core/sysctl_net_core.c
//主要是建立sysctl中与net相关的一些配置参数(见下图)
static __init int sysctl_core_init(void)
{
    register_net_sysctl(&init_net, "net/core", net_core_table);
    return register_pernet_subsys(&sysctl_core_ops);
}

static __net_init int sysctl_core_net_init(struct net *net)
{
    struct ctl_table *tbl;
    net->core.sysctl_somaxconn = SOMAXCONN;
    tbl = netns_core_table;
    if (!net_eq(net, &init_net)) {
        tbl = kmemdup(tbl, sizeof(netns_core_table), GFP_KERNEL);
        if (tbl == NULL)
            goto err_dup;
        tbl[0].data = &net->core.sysctl_somaxconn;
        if (net->user_ns != &init_user_ns) {
            tbl[0].procname = NULL;
        }
    }
    net->core.sysctl_hdr = register_net_sysctl(net, "net/core", tbl);
    if (net->core.sysctl_hdr == NULL)
        goto err_reg;
    return 0;
err_reg:
    if (tbl != netns_core_table)
        kfree(tbl);
err_dup:
    return -ENOMEM;
}
static __net_exit void sysctl_core_net_exit(struct net *net)
{
    struct ctl_table *tbl;
    tbl = net->core.sysctl_hdr->ctl_table_arg;
    unregister_net_sysctl_table(net->core.sysctl_hdr);
    BUG_ON(tbl == netns_core_table);
    kfree(tbl);
}
static __net_initdata struct pernet_operations sysctl_core_ops = {
    .init = sysctl_core_net_init,
    .exit = sysctl_core_net_exit,
};

这里写图片描述


4.总结
本文主要按照关于内核协议栈的各个子系统的*_initcall的调用顺序分析了几个核心的初始化步骤,包括socket层,协议层,设备层等,整个初始化过程还是比较简单的,主要涉及一些数据结构和缓存等的初始化,但是整个内核协议栈的对数据包的处理流程并不能很好地呈现,后续有机会再分析从系统调用开始整个数据包的收发流程。

ref: Linux 3.19.3 source tree

相关文章
|
8天前
|
算法 Linux 调度
深入理解Linux内核调度器:从基础到优化####
本文旨在通过剖析Linux操作系统的心脏——内核调度器,为读者揭开其高效管理CPU资源的神秘面纱。不同于传统的摘要概述,本文将直接以一段精简代码片段作为引子,展示一个简化版的任务调度逻辑,随后逐步深入,详细探讨Linux内核调度器的工作原理、关键数据结构、调度算法演变以及性能调优策略,旨在为开发者与系统管理员提供一份实用的技术指南。 ####
34 4
|
2天前
|
算法 Linux 开发者
Linux内核中的锁机制:保障并发控制的艺术####
本文深入探讨了Linux操作系统内核中实现的多种锁机制,包括自旋锁、互斥锁、读写锁等,旨在揭示这些同步原语如何高效地解决资源竞争问题,保证系统的稳定性和性能。通过分析不同锁机制的工作原理及应用场景,本文为开发者提供了在高并发环境下进行有效并发控制的实用指南。 ####
|
9天前
|
缓存 负载均衡 Linux
深入理解Linux内核调度器
本文探讨了Linux操作系统核心组件之一——内核调度器的工作原理和设计哲学。不同于常规的技术文章,本摘要旨在提供一种全新的视角来审视Linux内核的调度机制,通过分析其对系统性能的影响以及在多核处理器环境下的表现,揭示调度器如何平衡公平性和效率。文章进一步讨论了完全公平调度器(CFS)的设计细节,包括它如何处理不同优先级的任务、如何进行负载均衡以及它是如何适应现代多核架构的挑战。此外,本文还简要概述了Linux调度器的未来发展方向,包括对实时任务支持的改进和对异构计算环境的适应性。
30 6
|
存储 Unix Linux
浅入分析Linux
Linux 操作系统必须完成的两个主要目的 与硬件部分交互, 为包含在硬件平台上的所有底层可编程部件提供服务 为运行在计算机系统上的应用程序(即所谓的用户空间)提供执行环境 一些操作系统运行所有的用户程序都直接与硬件部分进行交互, 比如典型的MS-DOS。
1004 0
|
7天前
|
监控 Linux
如何检查 Linux 内存使用量是否耗尽?这 5 个命令堪称绝了!
本文介绍了在Linux系统中检查内存使用情况的5个常用命令:`free`、`top`、`vmstat`、`pidstat` 和 `/proc/meminfo` 文件,帮助用户准确监控内存状态,确保系统稳定运行。
67 6
|
8天前
|
Linux
在 Linux 系统中,“cd”命令用于切换当前工作目录
在 Linux 系统中,“cd”命令用于切换当前工作目录。本文详细介绍了“cd”命令的基本用法和常见技巧,包括使用“.”、“..”、“~”、绝对路径和相对路径,以及快速切换到上一次工作目录等。此外,还探讨了高级技巧,如使用通配符、结合其他命令、在脚本中使用,以及实际应用案例,帮助读者提高工作效率。
34 3
|
8天前
|
监控 安全 Linux
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景,包括 ping(测试连通性)、traceroute(跟踪路由路径)、netstat(显示网络连接信息)、nmap(网络扫描)、ifconfig 和 ip(网络接口配置)。掌握这些命令有助于高效诊断和解决网络问题,保障网络稳定运行。
26 2
|
16天前
|
缓存 监控 Linux
|
19天前
|
Linux Shell 数据安全/隐私保护
|
3天前
|
运维 监控 网络协议
运维工程师日常工作中最常用的20个Linux命令,涵盖文件操作、目录管理、权限设置、系统监控等方面
本文介绍了运维工程师日常工作中最常用的20个Linux命令,涵盖文件操作、目录管理、权限设置、系统监控等方面,旨在帮助读者提高工作效率。从基本的文件查看与编辑,到高级的网络配置与安全管理,这些命令是运维工作中的必备工具。
20 3
下一篇
无影云桌面