[Hive]Hive自定义函数UDF

简介: 版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/SunnyYoona/article/details/53244868 当Hive提供的内置函数无法满足你的业务处理需要时,此时就可以考虑使用用户自定义函数用户自定义函数(user defined function),针对单条记录。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/SunnyYoona/article/details/53244868

当Hive提供的内置函数无法满足你的业务处理需要时,此时就可以考虑使用用户自定义函数

用户自定义函数(user defined function),针对单条记录。 

编写一个UDF,需要继承UDF类,并实现evaluate()函数。在查询执行过程中,查询中对应的每个应用到这个函数的地方都会对这个类进行实例化。对于每行输入都会调用到evaluate()函数。而evaluate()函数处理的值会返回给Hive。同时用户是可以重载evaluate方法的。Hive会像Java的方法重载一样,自动选择匹配的方法。

1. 简单UDF
1.1 自定义Java类

下面自定义一个Java类OperationAddUDF,实现了Int,Double,Float以及String类型的加法操作。

 
 
  1. package com.sjf.open.hive.udf;
  2. import org.apache.hadoop.hive.ql.exec.UDF;
  3. import org.apache.hadoop.hive.serde2.ByteStream;
  4. import org.apache.hadoop.hive.serde2.io.DoubleWritable;
  5. import org.apache.hadoop.hive.serde2.lazy.LazyInteger;
  6. import org.apache.hadoop.io.FloatWritable;
  7. import org.apache.hadoop.io.IntWritable;
  8. import org.apache.hadoop.io.Text;
  9. /**
  10. * Created by xiaosi on 16-11-19.
  11. */
  12. public class OperationAddUDF extends UDF {
  13.    private final ByteStream.Output out = new ByteStream.Output();
  14.    /**
  15.     * IntWritable
  16.     * @param num1
  17.     * @param num2
  18.     * @return
  19.     */
  20.    public IntWritable evaluate(IntWritable num1, IntWritable num2){
  21.        if(num1 == null || num2 == null){
  22.            return null;
  23.        }
  24.        return new IntWritable(num1.get() + num2.get());
  25.    }
  26.    /**
  27.     * DoubleWritable
  28.     * @param num1
  29.     * @param num2
  30.     * @return
  31.     */
  32.    public DoubleWritable evaluate(DoubleWritable num1, DoubleWritable num2){
  33.        if(num1 == null || num2 == null){
  34.            return null;
  35.        }
  36.        return new DoubleWritable(num1.get() + num2.get());
  37.    }
  38.    /**
  39.     * FloatWritable
  40.     * @param num1
  41.     * @param num2
  42.     * @return
  43.     */
  44.    public FloatWritable evaluate(FloatWritable num1, FloatWritable num2){
  45.        if(num1 == null || num2 == null){
  46.            return null;
  47.        }
  48.        return new FloatWritable(num1.get() + num2.get());
  49.    }
  50.    /**
  51.     * Text
  52.     * @param num1
  53.     * @param num2
  54.     * @return
  55.     */
  56.    public Text evaluate(Text num1, Text num2){
  57.        if(num1 == null || num2 == null){
  58.            return null;
  59.        }
  60.        try{
  61.            Integer n1 = Integer.valueOf(num1.toString());
  62.            Integer n2 = Integer.valueOf(num2.toString());
  63.            Integer result = n1 + n2;
  64.            out.reset();
  65.            LazyInteger.writeUTF8NoException(out, result);
  66.            Text text = new Text();
  67.            text.set(out.getData(), 0, out.getLength());
  68.            return text;
  69.        }
  70.        catch (Exception e){
  71.            return null;
  72.        }
  73.    }
  74. }

UDF中evaluate()函数的参数和返回值类型只能是Hive可以序列化的数据类型。例如,如果用户处理的全是数值,那么UDF的输出参数类型可以是基本数据类型int,Integer封装的对象或者是一个IntWritable对象,也就是Hadoop对整型封装后的对象。用户不需要特别的关心将调用到哪个类型,因为当类型不一致的时候,Hive会自动将数据类型转换成匹配的类型。null值在Hive中对于任何数据类型都是合法的,但是对于Java基本数据类型,不能是对象,也不能是null。

1.2 Hive中使用

如果想在Hive中使用UDF,那么需要将Java代码进行编译,然后将编译后的UDF二进制类文件打包成一个Jar文件。然后,在Hive会话中,将这个Jar文件加入到类路径下,在通过CREATE FUNCTION 语句定义好使用这个Java类的函数:

1.2.1 添加Jar文件到类路径下
 
 
  1. hive (test)> add jar /home/xiaosi/open-hive-1.0-SNAPSHOT.jar;
  2. Added [/home/xiaosi/open-hive-1.0-SNAPSHOT.jar] to class path
  3. Added resources: [/home/xiaosi/open-hive-1.0-SNAPSHOT.jar]

需要注意的是,Jar文件路径是不需要用引号括起来的,同时,到目前为止这个路径需要是当前文件系统的全路径。Hive不仅仅将这个Jar文件加入到classpath下,同时还将其加入到分布式缓存中,这样整个集群的机器都是可以获得该Jar文件的。

1.2.2 创建函数add
 
 
  1. hive (test)> create temporary function add as 'com.sjf.open.hive.udf.OperationAddUDF';
  2. OK
  3. Time taken: 0.004 seconds

注意的是create temporary function语句中的temporary关键字,当前会话中声明的函数只会在当前会话中有效。因此用户需要在每个会话中都增加Jar文件然后创建函数。不过如果用户需要频繁的使用同一个Jar文件和函数的话,那么可以将相关语句增加到$HOME/.hiverc文件中去。

1.2.3 使用

现在这个数值相加函数可以像其他的函数一样使用了。

 
 
  1. hive (test)> select add(12, 34) from employee_part;
  2. OK
  3. 46
  4. Time taken: 0.078 seconds, Fetched: 1 row(s)
  5. hive (test)> select add(12.3, 20.1) from employee_part;
  6. OK
  7. 32.400000000000006
  8. Time taken: 0.098 seconds, Fetched: 1 row(s)
  9. hive (test)> select add("12", "45") from employee_part;
  10. OK
  11. 57
  12. Time taken: 0.077 seconds, Fetched: 1 row(s)
1.2.4 删除UDF

当我们使用完自定义UDF后,我们可以通过如下命令删除此函数:

 
 
  1. hive (test)> drop temporary function if exists add;

2. 复杂UDF
2.1 GenericUDF

和UDF相比,GenericUDF(org.apache.hadoop.hive.ql.udf.generic.GenericUDF)支持复杂类型(比如List,struct,map等)的输入和输出。GenericUDF可以让我们通过ObjectInspector来管理方法的参数,检查接收参数的类型和数量。

GenericUDF要求实现一下三个方法:

 
  
  1. // this is like the evaluate method of the simple API. It takes the actual arguments and returns the result
  2. abstract Object evaluate(GenericUDF.DeferredObject[] arguments);
  3. // Doesn't really matter, we can return anything, but should be a string representation of the function.
  4. abstract String getDisplayString(String[] children);
  5. // called once, before any evaluate() calls. You receive an array of object inspectors that represent the arguments of the function
  6. // this is where you validate that the function is receiving the correct argument types, and the correct number of arguments.
  7. abstract ObjectInspector initialize(ObjectInspector[] arguments);
2.2 Example

我们想要在Hive实现一个strContain方法,需要两个参数,一个是包含字符串的列表(list<String>),另一个是待寻找的字符串(String)。如果列表中包含我们提供的字符串,返回tue,否则返回false。功能如下所示:

 
  
  1. strContain(List("a", "b", "c"), "b"); // true
  2. strContain(List("a", "b", "c"), "d"); // false
2.3 代码
 
  
  1. package com.sjf.open.hive.udf;
  2. import org.apache.hadoop.hive.ql.exec.Description;
  3. import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
  4. import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
  5. import org.apache.hadoop.hive.ql.metadata.HiveException;
  6. import org.apache.hadoop.hive.ql.udf.generic.GenericUDF;
  7. import org.apache.hadoop.hive.serde2.lazy.LazyString;
  8. import org.apache.hadoop.hive.serde2.objectinspector.ListObjectInspector;
  9. import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
  10. import org.apache.hadoop.hive.serde2.objectinspector.primitive.BooleanObjectInspector;
  11. import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
  12. import org.apache.hadoop.hive.serde2.objectinspector.primitive.StringObjectInspector;
  13. import org.apache.hadoop.io.BooleanWritable;
  14. import com.google.common.base.Objects;
  15. import org.slf4j.Logger;
  16. import org.slf4j.LoggerFactory;
  17. import java.util.List;
  18. /**
  19. * Created by xiaosi on 16-11-21.
  20. *
  21. */
  22. @Description(name = "contain", value = "_FUNC_(List<T>, T) ")
  23. public class GenericUDFStrContain extends GenericUDF {
  24. private static final Logger logger = LoggerFactory.getLogger(GenericUDFStrContain.class);
  25. private ListObjectInspector listObjectInspector;
  26. private StringObjectInspector stringObjectInspector;
  27. @Override
  28. public ObjectInspector initialize(ObjectInspector[] arguments) throws UDFArgumentException {
  29. logger.info("--------- GenericUDFStrContain --- initialize");
  30. // 参数个数校验
  31. if (arguments.length != 2) {
  32. throw new UDFArgumentLengthException(
  33. "The function 'Contain' only accepts 2 argument : List<T> and T , but got " + arguments.length);
  34. }
  35. ObjectInspector argumentOne = arguments[0];
  36. ObjectInspector argumentTwo = arguments[1];
  37. // 参数类型校验
  38. if (!(argumentOne instanceof ListObjectInspector)) {
  39. throw new UDFArgumentException("The first argument of function must be a list / array");
  40. }
  41. if (!(argumentTwo instanceof StringObjectInspector)) {
  42. throw new UDFArgumentException("The second argument of function must be a string");
  43. }
  44. this.listObjectInspector = (ListObjectInspector) argumentOne;
  45. this.stringObjectInspector = (StringObjectInspector) argumentTwo;
  46. // 链表元素类型检查
  47. if (!(listObjectInspector.getListElementObjectInspector() instanceof StringObjectInspector)) {
  48. throw new UDFArgumentException("The first argument must be a list of strings");
  49. }
  50. // 返回值类型
  51. return PrimitiveObjectInspectorFactory.javaBooleanObjectInspector;
  52. }
  53. @Override
  54. public Object evaluate(DeferredObject[] arguments) throws HiveException {
  55. logger.info("--------- GenericUDFStrContain --- evaluate");
  56. // 利用ObjectInspector从DeferredObject[]中获取元素值
  57. List<LazyString> list = (List<LazyString>) this.listObjectInspector.getList(arguments[0].get());
  58. String str = this.stringObjectInspector.getPrimitiveJavaObject(arguments[1].get());
  59. if (Objects.equal(list, null) || Objects.equal(str, null)) {
  60. return null;
  61. }
  62. // 判断是否包含查询元素
  63. for (LazyString lazyString : list) {
  64. String s = lazyString.toString();
  65. if (Objects.equal(str, s)) {
  66. return new Boolean(true);
  67. }
  68. }
  69. return new Boolean(false);
  70. }
  71. @Override
  72. public String getDisplayString(String[] children) {
  73. return "arrayContainsExample() strContain(List<T>, T)";
  74. }
  75. }


2.4 测试

Java测试:

 
  
  1. package com.sjf.open.hive.udf;
  2. import org.apache.hadoop.hive.ql.metadata.HiveException;
  3. import org.apache.hadoop.hive.ql.udf.generic.GenericUDF;
  4. import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
  5. import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
  6. import org.apache.hadoop.hive.serde2.objectinspector.primitive.BooleanObjectInspector;
  7. import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
  8. import java.util.ArrayList;
  9. import java.util.List;
  10. /**
  11. * Created by xiaosi on 16-11-22.
  12. */
  13. public class GenericUDFStrContainTest {
  14. public static void test() throws HiveException {
  15. GenericUDFStrContain genericUDFStrContain = new GenericUDFStrContain();
  16. ObjectInspector stringOI = PrimitiveObjectInspectorFactory.javaStringObjectInspector;
  17. ObjectInspector listOI = ObjectInspectorFactory.getStandardListObjectInspector(stringOI);
  18. BooleanObjectInspector resultInspector = (BooleanObjectInspector) genericUDFStrContain.initialize(new ObjectInspector[]{listOI, stringOI});
  19. // create the actual UDF arguments
  20. List<String> list = new ArrayList<String>();
  21. list.add("a");
  22. list.add("b");
  23. list.add("c");
  24. // test our results
  25. // the value exists
  26. Object result = genericUDFStrContain.evaluate(new GenericUDF.DeferredObject[]{new GenericUDF.DeferredJavaObject(list), new GenericUDF.DeferredJavaObject("a")});
  27. System.out.println("-----------" + result);
  28. // the value doesn't exist
  29. Object result2 = genericUDFStrContain.evaluate(new GenericUDF.DeferredObject[]{new GenericUDF.DeferredJavaObject(list), new GenericUDF.DeferredJavaObject("d")});
  30. System.out.println("-----------" + result2);
  31. // arguments are null
  32. Object result3 = genericUDFStrContain.evaluate(new GenericUDF.DeferredObject[]{new GenericUDF.DeferredJavaObject(null), new GenericUDF.DeferredJavaObject(null)});
  33. System.out.println("-----------" + result3);
  34. }
  35. public static void main(String[] args) throws HiveException {
  36. test();
  37. }
  38. }

Hive测试:

在Hive中使用跟简单UDF一样,需要将Java代码进行编译,然后将编译后的UDF二进制类文件打包成一个Jar文件。然后,在Hive会话中,将这个Jar文件加入到类路径下,在通过CREATE FUNCTION 语句定义好使用这个Java类的函数:

 
  
  1. hive (test)> add jar /home/xiaosi/code/openDiary/HiveCode/target/open-hive-1.0-SNAPSHOT.jar;
  2. Added [/home/xiaosi/code/openDiary/HiveCode/target/open-hive-1.0-SNAPSHOT.jar] to class path
  3. Added resources: [/home/xiaosi/code/openDiary/HiveCode/target/open-hive-1.0-SNAPSHOT.jar]
  4. hive (test)> create temporary function strContain as 'com.sjf.open.hive.udf.GenericUDFStrContain';
  5. OK
  6. Time taken: 0.021 seconds

使用:

 
  
  1. hive (test)> select subordinates, strContain(subordinates, "tom") from employee2;
  2. OK
  3. ["lily","lucy","tom"] true
  4. ["lucy2","tom2"] false
  5. ["lily","lucy","tom"] true
  6. ["lily","yoona","lucy"] false
  7. Time taken: 1.147 seconds, Fetched: 4 row(s)
  8. hive (test)> select subordinates, strContain(subordinates, 1) from employee2;
  9. FAILED: SemanticException [Error 10014]: Line 1:21 Wrong arguments '1': The second argument of function must be a string
  10. hive (test)> select subordinates, strContain("yoona", 1) from employee2;
  11. FAILED: SemanticException [Error 10014]: Line 1:21 Wrong arguments '1': The first argument of function must be a list / array
  12. hive (test)> select subordinates, strContain("yoona", 1, 3) from employee2;
  13. FAILED: SemanticException [Error 10015]: Line 1:21 Arguments length mismatch '3': The function 'Contain' only accepts 2 argument : List<T> and T , but got 3

备注:

subordinates是一个array<string>类型集合。


资料:http://blog.matthewrathbone.com/2013/08/10/guide-to-writing-hive-udfs.html#the-complex-api



目录
相关文章
|
6月前
|
SQL 存储 Java
Hive【Hive(八)自定义函数】
Hive【Hive(八)自定义函数】
|
6月前
|
SQL 存储 Java
Hive UDF UDTF UDAF 自定义函数详解
Hive UDF UDTF UDAF 自定义函数详解
119 2
Hive UDF UDTF UDAF 自定义函数详解
|
2月前
|
SQL JavaScript 前端开发
Hive根据用户自定义函数、reflect函数和窗口分析函数
Hive根据用户自定义函数、reflect函数和窗口分析函数
33 6
|
6月前
|
SQL 缓存 Java
Hive 之 UDF 运用(包会的)
Hive的UDF允许用户自定义数据处理函数,扩展其功能。`reflect()`函数通过Java反射调用JDK中的方法,如静态或实例方法。例如,调用`MathUtils.addNumbers()`进行加法运算。要创建自定义UDF,可以继承`GenericUDF`,实现`initialize`、`evaluate`和`getDisplayString`方法。在`initialize`中检查参数类型,在`evaluate`中执行业务逻辑。最后,打包项目成JAR,上传到HDFS,并在Hive中注册以供使用。
150 2
|
6月前
|
SQL Java 程序员
Hive反射函数的使用-程序员是怎么学UDF函数的
Hive反射函数的使用-程序员是怎么学UDF函数的
41 0
|
6月前
|
SQL Java 数据处理
【Hive】Hive的函数:UDF、UDAF、UDTF的区别?
【4月更文挑战第17天】【Hive】Hive的函数:UDF、UDAF、UDTF的区别?
|
6月前
|
SQL 消息中间件 Apache
Flink报错问题之使用hive udf函数报错如何解决
Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。本合集提供有关Apache Flink相关技术、使用技巧和最佳实践的资源。
|
6月前
|
SQL 分布式计算 Java
Hive自定义函数UDF编写
Hive自定义函数UDF编写
84 2
|
6月前
|
SQL 搜索推荐 Java
Hive中的UDF是什么?请解释其作用和使用方法。
Hive中的UDF是什么?请解释其作用和使用方法。
91 0
|
SQL Java Shell
56 Hive自定义函数和Transform
56 Hive自定义函数和Transform
96 0