java多线程系列:通过对战游戏学习CyclicBarrier

简介:

CyclicBarrier是java.util.concurrent包下面的一个工具类,字面意思是可循环使用(Cyclic)的屏障(Barrier),通过它可以实现让一组线程到达一个屏障(也可以叫同步点)时被阻塞,直到最后一个线程到达屏障时,所有被屏障拦截的线程才会继续执行。

这篇文章将介绍CyclicBarrier这个同步工具类的以下几点

  1. 通过案例分析
  2. 两种不同构造函数测试
  3. CyclicBarrier和CountDownLatch的区别
  4. await方法及源码分析。

需求

继上一篇CountDownLatch模拟游戏加载后,现在用户点击开始按钮后,需要匹配包括自己在内的五个玩家才能开始游戏,匹配玩家成功后进入到选择角色阶段。当5位玩家角色都选择完毕后,开始进入游戏。进入游戏时需要加载相关的数据,待全部玩家都加载完毕后正式开始游戏。

解决方案

从需求中可以知道,想要开始游戏需要经过三个阶段,分别是

  1. 匹配玩家
  2. 选择角色
  3. 加载数据

在这三个阶段中,都需要互相等待对方完成才能继续进入下个阶段。
这时可以采用CyclicBarrier来作为各个阶段的节点,等待其他玩家到达,在进入下个阶段。

定义继承Runnable的类

这里名称就叫做StartGame,包含两个属性

private String player;
private CyclicBarrier barrier;

通过构造函数初始化两个属性

public StartGame(String player, CyclicBarrier barrier) {
    this.player = player;
    this.barrier = barrier;
}

run方法如下

public void run() {
    try {
        System.out.println(this.getPlayer()+" 开始匹配玩家...");
        findOtherPlayer();
        barrier.await();

        System.out.println(this.getPlayer()+" 进行选择角色...");
        choiceRole();
        System.out.println(this.getPlayer()+" 角色选择完毕等待其他玩家...");
        barrier.await();

        System.out.println(this.getPlayer()+" 开始游戏,进行游戏加载...");
        loading();
        System.out.println(this.getPlayer()+" 游戏加载完毕等待其他玩家加载完成...");
        barrier.await();


        start();
    } catch (Exception e){
        e.printStackTrace();
    }
}

其他的方法findOtherPlayer()、choiceRole()等待使用

Thread.sleep()

来模拟花费时间

编写测试代码

CyclicBarrier有两个构造函数,如下

public CyclicBarrier(int parties) {}
public CyclicBarrier(int parties, Runnable barrierAction) {}

先来看看一个参数的构造函数

CyclicBarrier(int parties)

public static void main(String[] args) throws IOException {
    CyclicBarrier barrier = new CyclicBarrier(5);

    Thread player1 = new Thread(new StartGame("1",barrier));
    Thread player2 = new Thread(new StartGame("2",barrier));
    Thread player3 = new Thread(new StartGame("3",barrier));
    Thread player4 = new Thread(new StartGame("4",barrier));
    Thread player5 = new Thread(new StartGame("5",barrier));

    player1.start();
    player2.start();
    player3.start();
    player4.start();
    player5.start();

    System.in.read();
}

测试结果如下

CyclicBarrier(int parties, Runnable barrierAction)

CyclicBarrier barrier = new CyclicBarrier(5);

替换为

CyclicBarrier barrier = new CyclicBarrier(5, () -> {
    try {
        System.out.println("阶段完成,等待2秒...");
        Thread.sleep(2000);
        System.out.println("进入下个阶段...");
    } catch (InterruptedException e) {
        e.printStackTrace();
    }

});

再来看看效果

可以看到在到达某个节点时,会执行实例化CyclicBarrier时传入的Runnable对象。而且每一次到达都会执行一次。

CyclicBarrier和CountDownLatch的区别

CountDownLatch CyclicBarrier
计数为0时,无法重置 计数达到0时,计数置为传入的值重新开始
调用countDown()方法计数减一,调用await()方法只进行阻塞,对计数没任何影响 调用await()方法计数减一,若减一后的值不等于0,则线程阻塞
不可重复使用 可重复使用

await方法

public int await(){}
public int await(long timeout, TimeUnit unit){}

无参的await方法这里就不做介绍了,主要介绍下有参的await方法。
有参的await方法传入两个参数,一个是时间、另一个是时间单位
当调用有参的await方法时会出现下方两个异常

java.util.concurrent.TimeoutException
java.util.concurrent.BrokenBarrierException

TimeoutException异常是指调用await方法后等待时间超过传入的时间,此时会将CyclicBarrier的状态变成broken,其他调用await方法将会抛出BrokenBarrierException异常,这时的CyclicBarrier将变得不可用,需要调用reset()方法重置CyclicBarrier的状态。

为什么这么说?
源码分析一波就可以看出来了
不管是有参还是无参的await方法都是调用CyclicBarrierdowait(boolean timed, long nanos)方法,这个方法代码太长了,截取部分贴出来

private int dowait(boolean timed, long nanos){
    //加锁、try catch代码
    final Generation g = generation;
    //判断栅栏的状态
    if (g.broken)
        throw new BrokenBarrierException();
    //...省略

    int index = --count;
    //(index == 0) 时的代码,省略

    for (;;) {
        try {
            if (!timed)
                trip.await();
            else if (nanos > 0L)
                nanos = trip.awaitNanos(nanos);
        } catch (InterruptedException ie) {}

        //判断栅栏的状态
        if (g.broken)
            throw new BrokenBarrierException();

        if (g != generation)
            return index;
        //判断是否是定时的,且已经超时了
        if (timed && nanos <= 0L) {
            //打破栅栏的状态
            breakBarrier();
            throw new TimeoutException();
        }
    }
    //解锁
}

在代码的尾部进行判断当前等待是否已经超时,如果是会调用breakBarrier()方法,且抛出TimeoutException异常,下面是breakBarrier()的代码

private void breakBarrier() {
    generation.broken = true;
    count = parties;
    trip.signalAll();
}

代码中将broken状态置为true,表示当前栅栏移除损坏状态,且重置栅栏数量,然后唤醒其他等待的线程。此时被唤醒的线程或者其他线程进入dowait方法时,都会抛出BrokenBarrierException异常

案例源代码地址:https://github.com/rainbowda/learnWay/tree/master/learnConcurrency/src/main/java/com/learnConcurrency/utils/cyclicBarrier

觉得不错的点个Star,谢谢

目录
相关文章
|
6天前
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
12天前
|
安全 Java 开发者
深入解读JAVA多线程:wait()、notify()、notifyAll()的奥秘
在Java多线程编程中,`wait()`、`notify()`和`notifyAll()`方法是实现线程间通信和同步的关键机制。这些方法定义在`java.lang.Object`类中,每个Java对象都可以作为线程间通信的媒介。本文将详细解析这三个方法的使用方法和最佳实践,帮助开发者更高效地进行多线程编程。 示例代码展示了如何在同步方法中使用这些方法,确保线程安全和高效的通信。
37 9
|
15天前
|
存储 安全 Java
Java多线程编程的艺术:从基础到实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及其实现方式,旨在帮助开发者理解并掌握多线程编程的基本技能。文章首先概述了多线程的重要性和常见挑战,随后详细介绍了Java中创建和管理线程的两种主要方式:继承Thread类与实现Runnable接口。通过实例代码,本文展示了如何正确启动、运行及同步线程,以及如何处理线程间的通信与协作问题。最后,文章总结了多线程编程的最佳实践,为读者在实际项目中应用多线程技术提供了宝贵的参考。 ####
|
12天前
|
监控 安全 Java
Java中的多线程编程:从入门到实践####
本文将深入浅出地探讨Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的摘要形式,本文将以一个简短的代码示例作为开篇,直接展示多线程的魅力,随后再详细解析其背后的原理与实现方式,旨在帮助读者快速理解并掌握Java多线程编程的基本技能。 ```java // 简单的多线程示例:创建两个线程,分别打印不同的消息 public class SimpleMultithreading { public static void main(String[] args) { Thread thread1 = new Thread(() -> System.out.prin
|
15天前
|
Java
JAVA多线程通信:为何wait()与notify()如此重要?
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是实现线程间通信的核心机制。它们通过基于锁的方式,使线程在条件不满足时进入休眠状态,并在条件满足时被唤醒,从而确保数据一致性和同步。相比其他通信方式,如忙等待,这些方法更高效灵活。 示例代码展示了如何在生产者-消费者模型中使用这些方法实现线程间的协调和同步。
31 3
|
14天前
|
安全 Java
Java多线程集合类
本文介绍了Java中线程安全的问题及解决方案。通过示例代码展示了使用`CopyOnWriteArrayList`、`CopyOnWriteArraySet`和`ConcurrentHashMap`来解决多线程环境下集合操作的线程安全问题。这些类通过不同的机制确保了线程安全,提高了并发性能。
|
15天前
|
Java UED
Java中的多线程编程基础与实践
【10月更文挑战第35天】在Java的世界中,多线程是提升应用性能和响应性的利器。本文将深入浅出地介绍如何在Java中创建和管理线程,以及如何利用同步机制确保数据一致性。我们将从简单的“Hello, World!”线程示例出发,逐步探索线程池的高效使用,并讨论常见的多线程问题。无论你是Java新手还是希望深化理解,这篇文章都将为你打开多线程的大门。
|
15天前
|
安全 Java 编译器
Java多线程编程的陷阱与最佳实践####
【10月更文挑战第29天】 本文深入探讨了Java多线程编程中的常见陷阱,如竞态条件、死锁、内存一致性错误等,并通过实例分析揭示了这些陷阱的成因。同时,文章也分享了一系列最佳实践,包括使用volatile关键字、原子类、线程安全集合以及并发框架(如java.util.concurrent包下的工具类),帮助开发者有效避免多线程编程中的问题,提升应用的稳定性和性能。 ####
42 1
|
19天前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
18天前
|
Java 大数据 API
14天Java基础学习——第1天:Java入门和环境搭建
本文介绍了Java的基础知识,包括Java的简介、历史和应用领域。详细讲解了如何安装JDK并配置环境变量,以及如何使用IntelliJ IDEA创建和运行Java项目。通过示例代码“HelloWorld.java”,展示了从编写到运行的全过程。适合初学者快速入门Java编程。
下一篇
无影云桌面