GDB调试STL的vector、list和map

简介:

       STL中提供了若干容器,在gdb调试的时候,因为其内部结构和元素数据类型方面因素,查看可是费了劲,把下面这个脚本保存为用户根目录下.gdbinit,当gdb启动的时候自动去加载,打印容器变量的时候自动识别识别调用很方便。

       未加载脚本:

(gdb) p one_rg 
$5 = {gid = {static npos = 18446744073709551615, _M_dataplus = {<std::allocator<char>> = {<__gnu_cxx::new_allocator<char>> = {<No data fields>}, <No data fields>}, 
      _M_p = 0x7c08c8 "rec"}}, smooth_enable = false, alloc_enable = false, mg_mc = {<std::_List_base<MGAndMCStruct, std::allocator<MGAndMCStruct> >> = {
      _M_impl = {<std::allocator<std::_List_node<MGAndMCStruct> >> = {<__gnu_cxx::new_allocator<std::_List_node<MGAndMCStruct> >> = {<No data fields>}, <No data fields>}, _M_node = {_M_next = 0x7c43c0, _M_prev = 0x7c4660}}}, <No data fields>}, d_mg = {static npos = 18446744073709551615, 
    _M_dataplus = {<std::allocator<char>> = {<__gnu_cxx::new_allocator<char>> = {<No data fields>}, <No data fields>}, _M_p = 0x7c6708 "rs_action"}}, d_cc = {
    static npos = 18446744073709551615, _M_dataplus = {<std::allocator<char>> = {<__gnu_cxx::new_allocator<char>> = {<No data fields>}, <No data fields>}, 
      _M_p = 0x7c6838 "ee_thompson"}}}
 
       加载脚本以后:

(gdb) p one_rg 
$1 = {
  gid = {
    static npos = 18446744073709551615, 
    _M_dataplus = {
      <std::allocator<char>> = {
        <__gnu_cxx::new_allocator<char>> = {<No data fields>}, <No data fields>}, 
      members of std::basic_string<char, std::char_traits<char>, std::allocator<char> >::_Alloc_hider: 
      _M_p = 0x7bf108 "rec"
    }
  }, 
  smooth_enable = false, 
  alloc_enable = false, 
  mg_mc = {
    <std::_List_base<MGAndMCStruct, std::allocator<MGAndMCStruct> >> = {
      _M_impl = {
        <std::allocator<std::_List_node<MGAndMCStruct> >> = {
          <__gnu_cxx::new_allocator<std::_List_node<MGAndMCStruct> >> = {<No data fields>}, <No data fields>}, 
        members of std::_List_base<MGAndMCStruct, std::allocator<MGAndMCStruct> >::_List_impl: 
        _M_node = {
          _M_next = 0x7c43c0, 
          _M_prev = 0x7c4540
        }
      }
    }, <No data fields>}, 
  d_mg = {
    static npos = 18446744073709551615, 
    _M_dataplus = {
      <std::allocator<char>> = {
        <__gnu_cxx::new_allocator<char>> = {<No data fields>}, <No data fields>}, 
      members of std::basic_string<char, std::char_traits<char>, std::allocator<char> >::_Alloc_hider: 
      _M_p = 0x7c6738 "rs_action"
    }
  }, 
  d_cc = {
    static npos = 18446744073709551615, 
    _M_dataplus = {
      <std::allocator<char>> = {
        <__gnu_cxx::new_allocator<char>> = {<No data fields>}, <No data fields>}, 
      members of std::basic_string<char, std::char_traits<char>, std::allocator<char> >::_Alloc_hider: 
      _M_p = 0x7c6868 "ee_thompson"
    }
  }
}
       脚本如下:
#                                                                                                        
#   STL GDB evaluators/views/utilities - 1.03
#
#   The new GDB commands:                                                         
# 	    are entirely non instrumental                                             
# 	    do not depend on any "inline"(s) - e.g. size(), [], etc
#       are extremely tolerant to debugger settings
#                                                                                 
#   This file should be "included" in .gdbinit as following:
#   source stl-views.gdb or just paste it into your .gdbinit file
#
#   The following STL containers are currently supported:
#
#       std::vector<T> -- via pvector command
#       std::list<T> -- via plist or plist_member command
#       std::map<T,T> -- via pmap or pmap_member command
#       std::multimap<T,T> -- via pmap or pmap_member command
#       std::set<T> -- via pset command
#       std::multiset<T> -- via pset command
#       std::deque<T> -- via pdequeue command
#       std::stack<T> -- via pstack command
#       std::queue<T> -- via pqueue command
#       std::priority_queue<T> -- via ppqueue command
#       std::bitset<n> -- via pbitset command
#       std::string -- via pstring command
#       std::widestring -- via pwstring command
#
#   The end of this file contains (optional) C++ beautifiers
#   Make sure your debugger supports $argc
#
#   Simple GDB Macros writen by Dan Marinescu (H-PhD) - License GPL
#   Inspired by intial work of Tom Malnar, 
#     Tony Novac (PhD) / Cornell / Stanford,
#     Gilad Mishne (PhD) and Many Many Others.
#   Contact: dan_c_marinescu@yahoo.com (Subject: STL)
#
#   Modified to work with g++ 4.3 by Anders Elton
#   Also added _member functions, that instead of printing the entire class in map, prints a member.



#
# std::vector<>
#

define pvector
	if $argc == 0
		help pvector
	else
		set $size = $arg0._M_impl._M_finish - $arg0._M_impl._M_start
		set $capacity = $arg0._M_impl._M_end_of_storage - $arg0._M_impl._M_start
		set $size_max = $size - 1
	end
	if $argc == 1
		set $i = 0
		while $i < $size
			printf "elem[%u]: ", $i
			p *($arg0._M_impl._M_start + $i)
			set $i++
		end
	end
	if $argc == 2
		set $idx = $arg1
		if $idx < 0 || $idx > $size_max
			printf "idx1, idx2 are not in acceptable range: [0..%u].\n", $size_max
		else
			printf "elem[%u]: ", $idx
			p *($arg0._M_impl._M_start + $idx)
		end
	end
	if $argc == 3
	  set $start_idx = $arg1
	  set $stop_idx = $arg2
	  if $start_idx > $stop_idx
	    set $tmp_idx = $start_idx
	    set $start_idx = $stop_idx
	    set $stop_idx = $tmp_idx
	  end
	  if $start_idx < 0 || $stop_idx < 0 || $start_idx > $size_max || $stop_idx > $size_max
	    printf "idx1, idx2 are not in acceptable range: [0..%u].\n", $size_max
	  else
	    set $i = $start_idx
		while $i <= $stop_idx
			printf "elem[%u]: ", $i
			p *($arg0._M_impl._M_start + $i)
			set $i++
		end
	  end
	end
	if $argc > 0
		printf "Vector size = %u\n", $size
		printf "Vector capacity = %u\n", $capacity
		printf "Element "
		whatis $arg0._M_impl._M_start
	end
end

document pvector
	Prints std::vector<T> information.
	Syntax: pvector <vector> <idx1> <idx2>
	Note: idx, idx1 and idx2 must be in acceptable range [0..<vector>.size()-1].
	Examples:
	pvector v - Prints vector content, size, capacity and T typedef
	pvector v 0 - Prints element[idx] from vector
	pvector v 1 2 - Prints elements in range [idx1..idx2] from vector
end 

#
# std::list<>
#

define plist
	if $argc == 0
		help plist
	else
		set $head = &$arg0._M_impl._M_node
		set $current = $arg0._M_impl._M_node._M_next
		set $size = 0
		while $current != $head
			if $argc == 2
				printf "elem[%u]: ", $size
				p *($arg1*)($current + 1)
			end
			if $argc == 3
				if $size == $arg2
					printf "elem[%u]: ", $size
					p *($arg1*)($current + 1)
				end
			end
			set $current = $current._M_next
			set $size++
		end
		printf "List size = %u \n", $size
		if $argc == 1
			printf "List "
			whatis $arg0
			printf "Use plist <variable_name> <element_type> to see the elements in the list.\n"
		end
	end
end

document plist
	Prints std::list<T> information.
	Syntax: plist <list> <T> <idx>: Prints list size, if T defined all elements or just element at idx
	Examples:
	plist l - prints list size and definition
	plist l int - prints all elements and list size
	plist l int 2 - prints the third element in the list (if exists) and list size
end

define plist_member
	if $argc == 0
		help plist_member
	else
		set $head = &$arg0._M_impl._M_node
		set $current = $arg0._M_impl._M_node._M_next
		set $size = 0
		while $current != $head
			if $argc == 3
				printf "elem[%u]: ", $size
				p (*($arg1*)($current + 1)).$arg2
			end
			if $argc == 4
				if $size == $arg3
					printf "elem[%u]: ", $size
					p (*($arg1*)($current + 1)).$arg2
				end
			end
			set $current = $current._M_next
			set $size++
		end
		printf "List size = %u \n", $size
		if $argc == 1
			printf "List "
			whatis $arg0
			printf "Use plist_member <variable_name> <element_type> <member> to see the elements in the list.\n"
		end
	end
end

document plist_member
	Prints std::list<T> information.
	Syntax: plist <list> <T> <idx>: Prints list size, if T defined all elements or just element at idx
	Examples:
	plist_member l int member - prints all elements and list size
	plist_member l int member 2 - prints the third element in the list (if exists) and list size
end


#
# std::map and std::multimap
#

define pmap
	if $argc == 0
		help pmap
	else
		set $tree = $arg0
		set $i = 0
		set $node = $tree._M_t._M_impl._M_header._M_left
		set $end = $tree._M_t._M_impl._M_header
		set $tree_size = $tree._M_t._M_impl._M_node_count
		if $argc == 1
			printf "Map "
			whatis $tree
			printf "Use pmap <variable_name> <left_element_type> <right_element_type> to see the elements in the map.\n"
		end
		if $argc == 3
			while $i < $tree_size
				set $value = (void *)($node + 1)
				printf "elem[%u].left: ", $i
				p *($arg1*)$value
				set $value = $value + sizeof($arg1)
				printf "elem[%u].right: ", $i
				p *($arg2*)$value
				if $node._M_right != 0
					set $node = $node._M_right
					while $node._M_left != 0
						set $node = $node._M_left
					end
				else
					set $tmp_node = $node._M_parent
					while $node == $tmp_node._M_right
						set $node = $tmp_node
						set $tmp_node = $tmp_node._M_parent
					end
					if $node._M_right != $tmp_node
						set $node = $tmp_node
					end
				end
				set $i++
			end
		end
		if $argc == 4
			set $idx = $arg3
			set $ElementsFound = 0
			while $i < $tree_size
				set $value = (void *)($node + 1)
				if *($arg1*)$value == $idx
					printf "elem[%u].left: ", $i
					p *($arg1*)$value
					set $value = $value + sizeof($arg1)
					printf "elem[%u].right: ", $i
					p *($arg2*)$value
					set $ElementsFound++
				end
				if $node._M_right != 0
					set $node = $node._M_right
					while $node._M_left != 0
						set $node = $node._M_left
					end
				else
					set $tmp_node = $node._M_parent
					while $node == $tmp_node._M_right
						set $node = $tmp_node
						set $tmp_node = $tmp_node._M_parent
					end
					if $node._M_right != $tmp_node
						set $node = $tmp_node
					end
				end
				set $i++
			end
			printf "Number of elements found = %u\n", $ElementsFound
		end
		if $argc == 5
			set $idx1 = $arg3
			set $idx2 = $arg4
			set $ElementsFound = 0
			while $i < $tree_size
				set $value = (void *)($node + 1)
				set $valueLeft = *($arg1*)$value
				set $valueRight = *($arg2*)($value + sizeof($arg1))
				if $valueLeft == $idx1 && $valueRight == $idx2
					printf "elem[%u].left: ", $i
					p $valueLeft
					printf "elem[%u].right: ", $i
					p $valueRight
					set $ElementsFound++
				end
				if $node._M_right != 0
					set $node = $node._M_right
					while $node._M_left != 0
						set $node = $node._M_left
					end
				else
					set $tmp_node = $node._M_parent
					while $node == $tmp_node._M_right
						set $node = $tmp_node
						set $tmp_node = $tmp_node._M_parent
					end
					if $node._M_right != $tmp_node
						set $node = $tmp_node
					end
				end
				set $i++
			end
			printf "Number of elements found = %u\n", $ElementsFound
		end
		printf "Map size = %u\n", $tree_size
	end
end

document pmap
	Prints std::map<TLeft and TRight> or std::multimap<TLeft and TRight> information. Works for std::multimap as well.
	Syntax: pmap <map> <TtypeLeft> <TypeRight> <valLeft> <valRight>: Prints map size, if T defined all elements or just element(s) with val(s)
	Examples:
	pmap m - prints map size and definition
	pmap m int int - prints all elements and map size
	pmap m int int 20 - prints the element(s) with left-value = 20 (if any) and map size
	pmap m int int 20 200 - prints the element(s) with left-value = 20 and right-value = 200 (if any) and map size
end


define pmap_member
	if $argc == 0
		help pmap_member
	else
		set $tree = $arg0
		set $i = 0
		set $node = $tree._M_t._M_impl._M_header._M_left
		set $end = $tree._M_t._M_impl._M_header
		set $tree_size = $tree._M_t._M_impl._M_node_count
		if $argc == 1
			printf "Map "
			whatis $tree
			printf "Use pmap <variable_name> <left_element_type> <right_element_type> to see the elements in the map.\n"
		end
		if $argc == 5
			while $i < $tree_size
				set $value = (void *)($node + 1)
				printf "elem[%u].left: ", $i
				p (*($arg1*)$value).$arg2
				set $value = $value + sizeof($arg1)
				printf "elem[%u].right: ", $i
				p (*($arg3*)$value).$arg4
				if $node._M_right != 0
					set $node = $node._M_right
					while $node._M_left != 0
						set $node = $node._M_left
					end
				else
					set $tmp_node = $node._M_parent
					while $node == $tmp_node._M_right
						set $node = $tmp_node
						set $tmp_node = $tmp_node._M_parent
					end
					if $node._M_right != $tmp_node
						set $node = $tmp_node
					end
				end
				set $i++
			end
		end
		if $argc == 6
			set $idx = $arg5
			set $ElementsFound = 0
			while $i < $tree_size
				set $value = (void *)($node + 1)
				if *($arg1*)$value == $idx
					printf "elem[%u].left: ", $i
					p (*($arg1*)$value).$arg2
					set $value = $value + sizeof($arg1)
					printf "elem[%u].right: ", $i
					p (*($arg3*)$value).$arg4
					set $ElementsFound++
				end
				if $node._M_right != 0
					set $node = $node._M_right
					while $node._M_left != 0
						set $node = $node._M_left
					end
				else
					set $tmp_node = $node._M_parent
					while $node == $tmp_node._M_right
						set $node = $tmp_node
						set $tmp_node = $tmp_node._M_parent
					end
					if $node._M_right != $tmp_node
						set $node = $tmp_node
					end
				end
				set $i++
			end
			printf "Number of elements found = %u\n", $ElementsFound
		end
		printf "Map size = %u\n", $tree_size
	end
end

document pmap_member
	Prints std::map<TLeft and TRight> or std::multimap<TLeft and TRight> information. Works for std::multimap as well.
	Syntax: pmap <map> <TtypeLeft> <TypeRight> <valLeft> <valRight>: Prints map size, if T defined all elements or just element(s) with val(s)
	Examples:
	pmap_member m class1 member1 class2 member2 - prints class1.member1 : class2.member2
	pmap_member m class1 member1 class2 member2 lvalue - prints class1.member1 : class2.member2 where class1 == lvalue
end


#
# std::set and std::multiset
#

define pset
	if $argc == 0
		help pset
	else
		set $tree = $arg0
		set $i = 0
		set $node = $tree._M_t._M_impl._M_header._M_left
		set $end = $tree._M_t._M_impl._M_header
		set $tree_size = $tree._M_t._M_impl._M_node_count
		if $argc == 1
			printf "Set "
			whatis $tree
			printf "Use pset <variable_name> <element_type> to see the elements in the set.\n"
		end
		if $argc == 2
			while $i < $tree_size
				set $value = (void *)($node + 1)
				printf "elem[%u]: ", $i
				p *($arg1*)$value
				if $node._M_right != 0
					set $node = $node._M_right
					while $node._M_left != 0
						set $node = $node._M_left
					end
				else
					set $tmp_node = $node._M_parent
					while $node == $tmp_node._M_right
						set $node = $tmp_node
						set $tmp_node = $tmp_node._M_parent
					end
					if $node._M_right != $tmp_node
						set $node = $tmp_node
					end
				end
				set $i++
			end
		end
		if $argc == 3
			set $idx = $arg2
			set $ElementsFound = 0
			while $i < $tree_size
				set $value = (void *)($node + 1)
				if *($arg1*)$value == $idx
					printf "elem[%u]: ", $i
					p *($arg1*)$value
					set $ElementsFound++
				end
				if $node._M_right != 0
					set $node = $node._M_right
					while $node._M_left != 0
						set $node = $node._M_left
					end
				else
					set $tmp_node = $node._M_parent
					while $node == $tmp_node._M_right
						set $node = $tmp_node
						set $tmp_node = $tmp_node._M_parent
					end
					if $node._M_right != $tmp_node
						set $node = $tmp_node
					end
				end
				set $i++
			end
			printf "Number of elements found = %u\n", $ElementsFound
		end
		printf "Set size = %u\n", $tree_size
	end
end

document pset
	Prints std::set<T> or std::multiset<T> information. Works for std::multiset as well.
	Syntax: pset <set> <T> <val>: Prints set size, if T defined all elements or just element(s) having val
	Examples:
	pset s - prints set size and definition
	pset s int - prints all elements and the size of s
	pset s int 20 - prints the element(s) with value = 20 (if any) and the size of s
end



#
# std::dequeue
#

define pdequeue
	if $argc == 0
		help pdequeue
	else
		set $size = 0
		set $start_cur = $arg0._M_impl._M_start._M_cur
		set $start_last = $arg0._M_impl._M_start._M_last
		set $start_stop = $start_last
		while $start_cur != $start_stop
			p *$start_cur
			set $start_cur++
			set $size++
		end
		set $finish_first = $arg0._M_impl._M_finish._M_first
		set $finish_cur = $arg0._M_impl._M_finish._M_cur
		set $finish_last = $arg0._M_impl._M_finish._M_last
		if $finish_cur < $finish_last
			set $finish_stop = $finish_cur
		else
			set $finish_stop = $finish_last
		end
		while $finish_first != $finish_stop
			p *$finish_first
			set $finish_first++
			set $size++
		end
		printf "Dequeue size = %u\n", $size
	end
end

document pdequeue
	Prints std::dequeue<T> information.
	Syntax: pdequeue <dequeue>: Prints dequeue size, if T defined all elements
	Deque elements are listed "left to right" (left-most stands for front and right-most stands for back)
	Example:
	pdequeue d - prints all elements and size of d
end



#
# std::stack
#

define pstack
	if $argc == 0
		help pstack
	else
		set $start_cur = $arg0.c._M_impl._M_start._M_cur
		set $finish_cur = $arg0.c._M_impl._M_finish._M_cur
		set $size = $finish_cur - $start_cur
        set $i = $size - 1
        while $i >= 0
            p *($start_cur + $i)
            set $i--
        end
		printf "Stack size = %u\n", $size
	end
end

document pstack
	Prints std::stack<T> information.
	Syntax: pstack <stack>: Prints all elements and size of the stack
	Stack elements are listed "top to buttom" (top-most element is the first to come on pop)
	Example:
	pstack s - prints all elements and the size of s
end



#
# std::queue
#

define pqueue
	if $argc == 0
		help pqueue
	else
		set $start_cur = $arg0.c._M_impl._M_start._M_cur
		set $finish_cur = $arg0.c._M_impl._M_finish._M_cur
		set $size = $finish_cur - $start_cur
        set $i = 0
        while $i < $size
            p *($start_cur + $i)
            set $i++
        end
		printf "Queue size = %u\n", $size
	end
end

document pqueue
	Prints std::queue<T> information.
	Syntax: pqueue <queue>: Prints all elements and the size of the queue
	Queue elements are listed "top to bottom" (top-most element is the first to come on pop)
	Example:
	pqueue q - prints all elements and the size of q
end



#
# std::priority_queue
#

define ppqueue
	if $argc == 0
		help ppqueue
	else
		set $size = $arg0.c._M_impl._M_finish - $arg0.c._M_impl._M_start
		set $capacity = $arg0.c._M_impl._M_end_of_storage - $arg0.c._M_impl._M_start
		set $i = $size - 1
		while $i >= 0
			p *($arg0.c._M_impl._M_start + $i)
			set $i--
		end
		printf "Priority queue size = %u\n", $size
		printf "Priority queue capacity = %u\n", $capacity
	end
end

document ppqueue
	Prints std::priority_queue<T> information.
	Syntax: ppqueue <priority_queue>: Prints all elements, size and capacity of the priority_queue
	Priority_queue elements are listed "top to buttom" (top-most element is the first to come on pop)
	Example:
	ppqueue pq - prints all elements, size and capacity of pq
end



#
# std::bitset
#

define pbitset
	if $argc == 0
		help pbitset
	else
        p /t $arg0._M_w
	end
end

document pbitset
	Prints std::bitset<n> information.
	Syntax: pbitset <bitset>: Prints all bits in bitset
	Example:
	pbitset b - prints all bits in b
end



#
# std::string
#

define pstring
	if $argc == 0
		help pstring
	else
		printf "String \t\t\t= \"%s\"\n", $arg0._M_data()
		printf "String size/length \t= %u\n", $arg0._M_rep()._M_length
		printf "String capacity \t= %u\n", $arg0._M_rep()._M_capacity
		printf "String ref-count \t= %d\n", $arg0._M_rep()._M_refcount
	end
end

document pstring
	Prints std::string information.
	Syntax: pstring <string>
	Example:
	pstring s - Prints content, size/length, capacity and ref-count of string s
end 

#
# std::wstring
#

define pwstring
	if $argc == 0
		help pwstring
	else
		call printf("WString \t\t= \"%ls\"\n", $arg0._M_data())
		printf "WString size/length \t= %u\n", $arg0._M_rep()._M_length
		printf "WString capacity \t= %u\n", $arg0._M_rep()._M_capacity
		printf "WString ref-count \t= %d\n", $arg0._M_rep()._M_refcount
	end
end

document pwstring
	Prints std::wstring information.
	Syntax: pwstring <wstring>
	Example:
	pwstring s - Prints content, size/length, capacity and ref-count of wstring s
end 

#
# C++ related beautifiers (optional)
#

set print pretty on
set print object on
set print static-members on
set print vtbl on
set print demangle on
set demangle-style gnu-v3
set print sevenbit-strings off


相关实践学习
阿里云图数据库GDB入门与应用
图数据库(Graph Database,简称GDB)是一种支持Property Graph图模型、用于处理高度连接数据查询与存储的实时、可靠的在线数据库服务。它支持Apache TinkerPop Gremlin查询语言,可以帮您快速构建基于高度连接的数据集的应用程序。GDB非常适合社交网络、欺诈检测、推荐引擎、实时图谱、网络/IT运营这类高度互连数据集的场景。 GDB由阿里云自主研发,具备如下优势: 标准图查询语言:支持属性图,高度兼容Gremlin图查询语言。 高度优化的自研引擎:高度优化的自研图计算层和存储层,云盘多副本保障数据超高可靠,支持ACID事务。 服务高可用:支持高可用实例,节点故障迅速转移,保障业务连续性。 易运维:提供备份恢复、自动升级、监控告警、故障切换等丰富的运维功能,大幅降低运维成本。 产品主页:https://www.aliyun.com/product/gdb
相关文章
|
3天前
|
编译器 C语言 C++
【c++丨STL】list模拟实现(附源码)
本文介绍了如何模拟实现C++中的`list`容器。`list`底层采用双向带头循环链表结构,相较于`vector`和`string`更为复杂。文章首先回顾了`list`的基本结构和常用接口,然后详细讲解了节点、迭代器及容器的实现过程。 最终,通过这些步骤,我们成功模拟实现了`list`容器的功能。文章最后提供了完整的代码实现,并简要总结了实现过程中的关键点。 如果你对双向链表或`list`的底层实现感兴趣,建议先掌握相关基础知识后再阅读本文,以便更好地理解内容。
13 1
|
16天前
|
算法 C语言 C++
【c++丨STL】list的使用
本文介绍了STL容器`list`的使用方法及其主要功能。`list`是一种双向链表结构,适用于频繁的插入和删除操作。文章详细讲解了`list`的构造函数、析构函数、赋值重载、迭代器、容量接口、元素访问接口、增删查改操作以及一些特有的操作接口如`splice`、`remove_if`、`unique`、`merge`、`sort`和`reverse`。通过示例代码,读者可以更好地理解如何使用这些接口。最后,作者总结了`list`的特点和适用场景,并预告了后续关于`list`模拟实现的文章。
31 7
|
2月前
|
NoSQL 编译器 C语言
C语言调试是开发中的重要技能,涵盖基本技巧如打印输出、断点调试和单步执行,以及使用GCC、GDB、Visual Studio和Eclipse CDT等工具。
C语言调试是开发中的重要技能,涵盖基本技巧如打印输出、断点调试和单步执行,以及使用GCC、GDB、Visual Studio和Eclipse CDT等工具。高级技巧包括内存检查、性能分析和符号调试。通过实践案例学习如何有效定位和解决问题,同时注意保持耐心、合理利用工具、记录过程并避免过度调试,以提高编程能力和开发效率。
50 1
|
3月前
|
存储 搜索推荐 C++
【C++篇】深度剖析C++ STL:玩转 list 容器,解锁高效编程的秘密武器2
【C++篇】深度剖析C++ STL:玩转 list 容器,解锁高效编程的秘密武器
67 2
|
3月前
|
存储 C++ 容器
【C++篇】深度剖析C++ STL:玩转 list 容器,解锁高效编程的秘密武器1
【C++篇】深度剖析C++ STL:玩转 list 容器,解锁高效编程的秘密武器
73 5
|
3月前
|
存储 编译器 C++
【C++篇】揭开 C++ STL list 容器的神秘面纱:从底层设计到高效应用的全景解析(附源码)
【C++篇】揭开 C++ STL list 容器的神秘面纱:从底层设计到高效应用的全景解析(附源码)
85 2
|
3月前
|
C++
【C++】C++ STL 探索:List使用与背后底层逻辑(三)
【C++】C++ STL 探索:List使用与背后底层逻辑
|
3月前
|
C++
【C++】C++ STL 探索:List使用与背后底层逻辑(二)
【C++】C++ STL 探索:List使用与背后底层逻辑
|
5月前
|
NoSQL Linux C语言
Linux GDB 调试
Linux GDB 调试
73 10
|
5月前
|
NoSQL Linux C语言
嵌入式GDB调试Linux C程序或交叉编译(开发板)
【8月更文挑战第24天】本文档介绍了如何在嵌入式环境下使用GDB调试Linux C程序及进行交叉编译。调试步骤包括:编译程序时加入`-g`选项以生成调试信息;启动GDB并加载程序;设置断点;运行程序至断点;单步执行代码;查看变量值;继续执行或退出GDB。对于交叉编译,需安装对应架构的交叉编译工具链,配置编译环境,使用工具链编译程序,并将程序传输到开发板进行调试。过程中可能遇到工具链不匹配等问题,需针对性解决。
163 3