模型调优没效果? 不妨试试Batch Normalization!

简介:

今儿调模型大佬又给支了一招,叫Batch Normalization(下面简称BN),虽然还没有深刻理解这玩意是什么,但是是真的挺有效的,哈哈。因此本文只是总结一下BN的具体操作流程以及如何用tensorflow来实现BN,对于BN更深层次的理解,为什么要BN,BN是否真的有效大家可以参考知乎上的回答:https://www.zhihu.com/question/38102762

1、BN的流程

传统的神经网络,只是在将样本x进入到输入层之前对x进行0-1标准化处理(减均值,除标准差),以降低样本间的差异性,如下图所示:

c29cf3bf36035680d319e419e35a8100ad7c8a5a

BN是在此基础上,不仅仅只对输入层的输入数据x进行标准化,还对每个隐藏层的输入进行标准化,如下图所示:

05c4408f051d4cc5bf0281feeaabe27070f722f6

可以看到,由标准化的x得到第二层的输入h1的时候,经历了如下的步骤:

1、第一层的权重项w 和 输入x想成,得到s1
2、对s1进行0-1均值方差标准化,得到s2
3、设置两个参数γ 和 β ,计算γ * s1 + β 得到s3。注意,这里的γ 和 β是网络要学习的变量。
4、将s3经过激活函数激活之后得到h1

哎,BN的流程原来是这样的。。早上的时候看的太快,以为就是对每一层的输入做一个0-1标准化,再加一个γ 和 β呢。唉,得好好反思反思,明天罚自己减一个鸡腿。废话不多说,我们来看看实现吧。

2、tensorflow实现BN

tensorflow实现BN是很简单的,只需要两个函数就可以。

tf.nn.moments

该函数的样例如下:

batch_mean, batch_var = tf.nn.moments(data, [0])

可以看到,我们输入的第一个参数是我们的data,一定要记住,这个data是w*x之后的。第二个参数是我们要在哪一维做标准化,如果是二维数据,通常每一列代表的是一个特征,因此我们一般选择axis=[0],如果你想对所有的数据做一个标准化,那么axis=[0,1]。

tf.nn.batch_normalization

该函数的样例如下:

tf.nn.batch_normalization(
 data,
 mean,
 variance,
 offset,
 scale,
 variance_epsilon,
 name=None
)

我们需要输入我们的data,即w*x,然后还有刚刚用moments函数得到的均值和方差,scala和offset即前文提到的的γ 和 β ,这是两个Variable。

完整实例
最后来看一个完整实例吧:

batch_mean, batch_var = tf.nn.moments(data, [0])
scale2 = tf.Variable(tf.ones([units]))
beta2 = tf.Variable(tf.zeros([units]))
data = tf.nn.batch_normalization(data, batch_mean, batch_var, beta2, scale2,variance_epsilon=1e-3)

参考资料:https://blog.csdn.net/whitesilence/article/details/75667002


原文发布时间为:2018-08-22

本文作者:文文

本文来自云栖社区合作伙伴“Python爱好者社区”,了解相关信息可以关注“Python爱好者社区”。

相关文章
|
7月前
|
机器学习/深度学习
大模型训练loss突刺原因和解决办法
【1月更文挑战第19天】大模型训练loss突刺原因和解决办法
1131 1
大模型训练loss突刺原因和解决办法
|
机器学习/深度学习 资源调度 监控
深度学习基础入门篇[六]:模型调优,学习率设置(Warm Up、loss自适应衰减等),batch size调优技巧,基于方差放缩初始化方法。
深度学习基础入门篇[六]:模型调优,学习率设置(Warm Up、loss自适应衰减等),batch size调优技巧,基于方差放缩初始化方法。
|
5月前
|
安全 Windows
|
7月前
|
机器学习/深度学习 并行计算 数据可视化
Batch Size 对神经网络训练的影响
Batch Size 对神经网络训练的影响
124 0
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
详解Batch Normalization并基于PyTorch实操(附代码)
详解Batch Normalization并基于PyTorch实操(附代码)
179 2
|
机器学习/深度学习 人工智能 资源调度
深度学习入门基础CNN系列——批归一化(Batch Normalization)和丢弃法(dropout)
批归一化方法(Batch Normalization,BatchNorm)是由Ioffe和Szegedy于2015年提出的,已被广泛应用在深度学习中,其目的是对神经网络中间层的输出进行标准化处理,使得中间层的输出更加稳定。丢弃法(Dropout)是深度学习中一种常用的抑制过拟合的方法,其做法是在神经网络学习过程中,随机删除一部分神经元。训练时,随机选出一部分神经元,将其输出设置为0,这些神经元将不对外传递信号。
587 1
深度学习入门基础CNN系列——批归一化(Batch Normalization)和丢弃法(dropout)
|
PyTorch 算法框架/工具
Pytorch疑难小实验:Torch.max() Torch.min()在不同维度上的解释
Pytorch疑难小实验:Torch.max() Torch.min()在不同维度上的解释
167 0
|
PyTorch 算法框架/工具
pytorch中optimizer为不同参数设置不同的学习率
pytorch中optimizer为不同参数设置不同的学习率
599 0
|
机器学习/深度学习 计算机视觉
Batch Normalization, 批标准化,神经网络shortcut 是什么,无脑用ReLU(CV领域). 无脑用3x3.
和普通的数据标准化类似, 是将分散的数据统一的一种做法, 也是优化神经网络的一种方法. 在之前 Normalization 的简介视频中我们一提到, 具有统一规格的数据, 能让机器学习更容易学习到数据之中的规律.
386 0
|
机器学习/深度学习 并行计算 数据可视化
Batch Size对神经网络训练的影响
这篇文章非常全面细致地介绍了Batch Size的相关问题。结合一些理论知识,通过大量实验,文章探讨了Batch Size的大小对模型性能的影响、如何影响以及如何缩小影响等有关内容。
Batch Size对神经网络训练的影响