干货 | 纽约大学陈溪: AlphaGo Zero技术演进的必然性(附PPT)

简介:

陈溪:今天我要跟大家分享一下为什么要把机器学习和运筹学这两个学科结合起来,才能有效地解决很多实际的问题。

一、机器学习

afcadfef5000445ed6d1e040b22e7b5b1837cc5c

什么是机器学习?首先需要有一堆数据,然后有机器学习的算法,对于数据的统计建模、概率建模和数据的假设来作为算法的支撑。机器学习一般常用的应用是对数据进行预测,比如预测明天股票的价格,这种都是一些基础的预测,更重要的是通过机器学习,去学习数据中的一些模式。

b13f79871b399f5a96793de89470bf66fe4abe3c

机器学习从大的角度分成两类:监督学习与无监督学习(Supervised Learning & Unsupervised Learning)。比如我们通过房间里的照片来识别人脸,用某些方式进行一定的标注来确定人脸在什么地方,这时候我们就叫做有监督的学习。监督学习的框架如上图所示,根据预测的函数,把机器学习的特征映射到值域上。

9044c45b5df1362cd3a97b50e4e52f38cc82cc70

没有监督的学习是一个更加广泛的领域,比如我们需要把图片进行分类,这是完全根据人的需求和感觉,通过机器学习方法进行分类。

ff1059f77b1a3d81c53f87ecae2e75a8b8ae52db

深度学习是一个自动提取特征的有效工具,比如图像的结构化让深度学习得以提取足够的特征。然而并不是每个领域的数据都能够通过深度学习的方式把有效的特征提取出来,比如在很多金融领域,一定要把深度学习与非深度学习的方法进行有效的比对。

二、从学习到决策

传统的机器学习通常处理静态数据,但是这并不能满足很多商业需求,许多商业应用最终需要做决策

fd464fce46422897f04705816bc7e3bcce1a9fde

上面这张图把整个数据分析分成五个阶段:

● 第一阶段:Descriptive( 描述性 ),对数据进行基本的描述;
● 第二阶段:Diagnostic( 诊断性 ),对数据进行基本的诊断;
● 第三阶段:Discovery( 发现 ),挖掘数据内在的模型;
● 第四阶段:Predictive( 预测性 ),预测可能发生的情况的分析;

● 第五阶段:Prescriptive(指定),数据驱动决策的过程。

c2f718bd559a3ae794fb298981a987b24f8f1ea7

在现实领域中,我们会遇到很多决策的问题,比如决策库存量、设施位置、路线规划、商品价格等。

3654b584e7fda79c6cdd40d17c7d60124f8b06d5

AlphaGo Zero,作为围棋的一个重大进展,它不仅要对对手进行预测,同时还要对落子进行决策。所以Google设计了deep reinforcement learning(深度强化学习),它带有决策的成分,通过Monte Carlo tree search(蒙特卡洛树搜索),让机器和机器自己进行对战,从而进行学习。不管是学习还是决策,Simulation technique(模拟技术)在AlphaGo Zero中也很重要。

对于商业应用仍然很简单,这是为什么?在一个围棋的程序中,尽管搜索空间很大,信息是完整的,然后目标函数简单而明确(赢或输),而在商业决策过程中,目标函数可能会非常复杂。

a597acbfcff4c9e8f7c59fd52f27f86b64d6a743

这个研究工作叫Assortment optimization,基本上是一个推荐系统,比如搜索一个航班,它会自动帮我挑出性价比最高的几个航班。

c55f7f0b396f3f218529ffd5759ea26245786876

做Assortment optimization?首先,我们要了解客户的购买行为,然后用choice model(选择模型)去做选择。

d1dc992c90443b83ddbcf1452b85dcab18be5473

MNL是Logit类模型的基本型式,其选择一个产品的概率等于这个产品的效率(用户喜欢的程度)除上所有推荐产品的效率总和加1(S:推荐的产品,a:选择的产品,1:用户什么产品都不喜欢)。

在现实生活中还有很多复杂的情况,MNL不可能是一直有效的模型。

10c5fdd0e66b7f8d6d1d8bc76316775dbfed37a3

Nested logit models是先选择一个大类,然后在大类中再进行产品的选择,如上图所示,概率分成两部分,一部分是选择毛衣的概率,另一部分是选择毛衣的具体款式的概率,这样就构建了一个多层的选择过程。

23d733a1df9c4da2f197968ee30e4c5c0207d1d0

给定choice model,如何选择最好的产品推荐给客户?我们选择一个S(推荐的产品)做组合优化,使得它数学期望值的收益最大化。然而,现实生活中更复杂的问题是你并不知道用户选择产品的概率。

7a2c9f680fef1c660f3415f9b52dc7f617086502

Ruelala和唯品会是快消品的销售平台,销售时间很短,没有足够多的历史数据去学习用户对产品的喜好程度。Facebook在做在线广告的时候,若产品的选择数以百万计,这时候就无法估计用户对每一个产品的喜好程度。所以我们需要动态推荐系统,把机器学习和智能决策结合起来。

c826d392af618212674f48b35c1b3140cc80c962

上图是简单的动态雏形,在每一个时刻我们假设给用户做一个产品的推荐,通过用户购买情况,不断的学习和做决策,一直到整个销售区间终止。如果知道用户的选择概率,可以把它做成静态的优化问题,如果不知道,就做成一个动态的优化问题。

d1e9e365b380ced9b1fae359e54cd74d80be39ee

怎么评估算法的好坏?在学术圈有一个叫Regret analysis的方法:将最佳分类与选择分类预期收益均差最小化。我们的目标是构造一个机器学习和决策的算法,使得在时间足够长的时候,收益差非常小,以及收益差怎么减少。

953ed469bd240b36f43fe4ee14fb9c3aa7c6bc90

这些模型虽然很有用,但还不够复杂,机器学习的精髓在于特征的提取,比如利用上下文的信息,把用户和产品的特征提取出来,做一个动态的Choice Model,这样就能更好的服务于现实。

5ba3679bfce938ad6ea97dca42e300ae8a781a53

沃尔玛做过类似的工作,根据用户已经放在购物车里的产品,在最后结账的过程中再推荐产品。

三、总结

a34e55066ebbf08305db033af894a52cbf44a079

很多商业的问题极其复杂,我们要深入理解问题本质的结构,机器学习与决策要有机的结合起来。只有把机器学习过程,随机的建模和优化全部柔和在一起,我们才能对大数据进行更好的理解和处理。


原文发布时间为:2018-08-22

本文作者:数据派

本文来自云栖社区合作伙伴“数据派THU”,了解相关信息可以关注“数据派THU”。

相关文章
技术人修炼之道阅读笔记(一)让自己更值钱的5个能力
技术人修炼之道阅读笔记(一)让自己更值钱的5个能力
|
机器学习/深度学习 Web App开发 人工智能
领航未来,探索AI无尽前沿:2023年WAIC云帆奖得主揭晓
领航未来,探索AI无尽前沿:2023年WAIC云帆奖得主揭晓
588 0
|
人工智能 开发者 知识图谱
独家下载!认知智能大咖观点最新出炉!带你揭秘强大技术背后的影响力!
我们正处在认知智能起步的阶段,还有很多未知的因素,也不知道未来往哪走,但是有一条,无非是要么从知识,要么图谱、要么融合,但是可以肯定地说前景是无限的。这里有很多的机会,把我们的认知智能,搜索、回答问题、推理这些东西用在工业界的很多场景里,认知智能技术蕴藏着巨大的前景。——周明 创新工场首席科学家、中国计算机学会副理事长
15554 2
独家下载!认知智能大咖观点最新出炉!带你揭秘强大技术背后的影响力!
|
机器学习/深度学习 人工智能 达摩院
|
城市大脑 人工智能
专访| 达摩院视觉黑科技创造者华先胜
华先胜,阿里科学家、城市大脑人工智能负责人、被业界公认为“视觉识别和视觉搜索领域的国际级权威学者”。
2441 0
专访| 达摩院视觉黑科技创造者华先胜
|
人工智能
【周志华辟谣“出走南大”】大牛下海热,AI学界已千疮百孔
月初,南大教授周志华离职谣言曾引发热议,相关教授虽在微博立即澄清,但不免又将学术薪酬差、研究自由度小、产业资金雄厚但科研能力弱等敏感问题拉回公众视线。新智元梳理了近年来多位教授投身产业的信息,并对标国际,试图从国外教授的多元化身份和产学结合的模式中,找到一些国内环境适合借鉴的经验,使得产学研多方的人才可持续性发展得以保障。
2138 0