对抗思想与强化学习的碰撞-SeqGAN模型原理和代码解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介:

1、背景

GAN作为生成模型的一种新型训练方法,通过discriminative model来指导generative model的训练,并在真实数据中取得了很好的效果。尽管如此,当目标是一个待生成的非连续性序列时,该方法就会表现出其局限性。非连续性序列生成,比如说文本生成,为什么单纯的使用GAN没有取得很好的效果呢?主要的屏障有两点:

1)在GAN中,Generator是通过随机抽样作为开始,然后根据模型的参数进行确定性的转化。通过generative model G的输出,discriminative model D计算的损失值,根据得到的损失梯度去指导generative model G做轻微改变,从而使G产生更加真实的数据。而在文本生成任务中,G通常使用的是LSTM,那么G传递给D的是一堆离散值序列,即每一个LSTM单元的输出经过softmax之后再取argmax或者基于概率采样得到一个具体的单词,那么这使得梯度下架很难处理。

2)GAN只能评估出整个生成序列的score/loss,不能够细化到去评估当前生成token的好坏和对后面生成的影响。

强化学习可以很好的解决上述的两点。再回想一下Policy Gradient的基本思想,即通过reward作为反馈,增加得到reward大的动作出现的概率,减小reward小的动作出现的概率,如果我们有了reward,就可以进行梯度训练,更新参数。如果使用Policy Gradient的算法,当G产生一个单词时,如果我们能够得到一个反馈的Reward,就能通过这个reward来更新G的参数,而不再需要依赖于D的反向传播来更新参数,因此较好的解决了上面所说的第一个屏障。对于第二个屏障,当产生一个单词时,我们可以使用蒙塔卡罗树搜索(Alpho Go也运用了此方法)立即评估当前单词的好坏,而不需要等到整个序列结束再来评价这个单词的好坏。

因此,强化学习和对抗思想的结合,理论上可以解决非连续序列生成的问题,而SeqGAN模型,正是这两种思想碰撞而产生的可用于文本序列生成的模型。

SeqGAN模型的原文地址为:https://arxiv.org/abs/1609.05473,当然在我的github链接中已经把下载好的原文贴进去啦。

结合代码可以更好的理解模型的细节哟:https://github.com/princewen/tensorflow_practice/tree/master/seqgan

2、SeqGAN的原理

SeqGAN的全称是Sequence Generative Adversarial Nets。这里打公式太麻烦了,所以我们用word打好再粘过来,冲这波手打也要给小编一个赞呀,哈哈!

整体流程

8ac3e7e7deed3e4596b9966e039f618fe83b8939

模型的示意图如下:

4f784d14c59745660104aa41322b08c2189cb377

Generator模型和训练

接下来,我们分别来说一下Generator模型和Discriminator模型结构。

Generator一般选择的是循环神经网络结构,RNN,LSTM或者是GRU都可以。对于输入的序列,我们首先得到序列中单词的embedding,然后输入每个cell中,并结合一层全链接隐藏层得到输出每个单词的概率,即:

58fe04e1e6c0ebbb3362d480eb0d0373ea03c59e

有了这个概率,Generator可以根据它采样一批产生的序列,比如我们生成一个只有,两个单词的序列,总共的单词序列有3个,第一个cell的输出为(0.5,0.5,0.0),第二个cell的输出为(0.1,0.8,0.1),那么Generator产生的序列以0.4的概率是1->2,以0.05的概率是1->1。注意这里Generator产生的序列是概率采样得到的,而不是对每个输出进行argmax得到的固定的值。这和policy gradient的思想是一致的。

在每一个cell我们都能得到一个概率分布,我们基于它选择了一个动作或者说一个单词,如何判定基于这个概率分布得到的单词的还是坏的呢?即我们需要一个reward来左右这个单词被选择的概率。这个reward怎么得到呢,就需要我们的Discriminator以及蒙塔卡罗树搜索方法了。前面提到过Reward的计算依据是最大可能的Discriminator,即尽可能的让Discriminator认为Generator产生的数据为real-world的数据。这里我们设定real-world的数据的label为1,而Generator产生的数据label为0.

如果当前的cell是最后的一个cell,即我们已经得到了一个完整的序列,那么此时很好办,直接把这个序列扔给Discriminator,得到输出为1的概率就可以得到reward值。如果当前的cell不是最后一个cell,即当前的单词不是最后的单词,我们还没有得到一个完整的序列,如何估计当前这个单词的reward呢?我们用到了蒙特卡罗树搜索的方法。即使用前面已经产生的序列,从当前位置的下一个位置开始采样,得到一堆完整的序列。在原文中,采样策略被称为roll-out policy,这个策略也是通过一个神经网络实现,这个神经网络我们可以认为就是我们的Generator。得到采样的序列后,我们把这一堆序列扔给Discriminator,得到一批输出为1的概率,这堆概率的平均值即我们的reward。这部分正如过程示意图中的下面一部分:

64908b28e60594781fa75c6f7c5ff6c540a7dd56

用原文中的公式表示如下:

73afd371cb8d86743a916e946ad7c265e0c91c9c

得到了reward,我们训练Generator的方式就很简单了,即通过Policy Gradient的方式进行训练。最简单的思想就是增加reward大的动作的选择概率,减小reward小的动作的选择概率。

Discriminator模型和训练

Discriminator模型即一个分类器,对文本分类的分类器很多,原文采用的是卷积神经网络。同时为了使模型的分类效果更好,在CNN的基础上增加了一个highway network。有关highway network的介绍参考博客:https://blog.csdn.net/l494926429/article/details/51737883,这里就不再细讲啦。

对于Discriminator来说,既然是一个分类器,输出的又是两个类别的概率值,我们很自然的想到使用类似逻辑回归的对数损失函数,没错,论文中也是使用对数损失来训练Discriminator的。

04206012c26f811d2937b83989586a26ea3018ea

结合oracle模型


可以说,模型我们已经介绍完了,但是在实验部分,论文中引入了一个新的模型中,被称为oracle model。这里的oracle如何翻译,我还真的是不知道,总不能翻译为甲骨文吧。这个oracle model被用来生成真实的序列,可以认为这个model就是一个被训练完美的lstm模型,输出的序列都是real-world数据。论文中使用这个模型的原因有两点:首先是可以用来产生训练数据,另一点是可以用来评价我们Generator的真实表现。原文如下:

db52874ac408b5f6146a0eabd23b3e3c773bf3f9

我们会在训练过程中不断通过上面的式子来评估我们的Generator与oracle model的相似性。

预训练过程

上面我们讲的其实是在对抗过程中Generator和Discriminator的训练过程,其实在进行对抗之前,我们的Generator和Discriminator都有一个预训练的过程,这能使我们的模型更快的收敛。

对于Generator来说,预训练和对抗过程中使用的损失函数是不一样的,在预训练过程中,Generator使用的是交叉熵损失函数,而在对抗过程中,我们使用的则是Policy Gradient中的损失函数,即对数损失*奖励值。

而对Discriminator来说,两个过程中的损失函数都是一样的,即我们前面介绍的对数损失函数。

SeqGAN模型流程

介绍了这么多,我们再来看一看SeqGAN的流程:

75809e2e57d24cb8cedb49cfb522f86b32392381

3、SeqGAN代码解析

这里我们用到的代码高度还原了原文中的实验过程,本文参考的github代码地址为:https://github.com/ChenChengKuan/SeqGAN_tensorflow

参考的代码为python2版本的,本文将其稍作修改,改成了python3版本的。其实主要就是print和pickle两个地方。本文代码的github地址为:https://github.com/princewen/tensorflow_practice/tree/master/seqgan

代码实在是太多了,我们这里只介绍一下代码结构,具体的代码细节大家可以参考github进行学习。

3.1 代码结构

本文的代码结构如下:

6f82f7d8e1694271bbeaff9f599814d976182662

save:save文件夹下保存了我们的实验日志,eval_file是由Generator产生,用来评价Generator和oracle model相似性所产生的数据。real_data是由oracle model产生的real-world数据,generator_sample是由Generator产生的数据,target_params是oracle model的参数,我们直接用里面的参数还原oracle model。

configuration : 一些配置参数

dataloader.py: 产生训练数据,对于Generator来说,我们只在预训练中使用dataloader来得到训练数据,对Discriminator来说,在预训练和对抗过程中都要使用dataloader来得到训练数据。而在eval过程即进行Generator和oracle model相似性判定时,会用刀dataloader来产生数据。

discriminator.py:定义了我们的discriminator

generator.py :定义了我们的generator

rollout.py:计算reward时的采样过程

target_lstm.py:定义了我们的oracle model,这个文件不用管,复制过去就好,哈哈。

train.py : 定义了我们的训练过程,这是我们一会重点讲解的文件

utils.py : 定义了一些在训练过程中的通用过程。

下面,我们就来介绍一下每个文件。

3.2 dataloader

dataloader是我们的数据生成器。

e3c34f12f03ee2470edcbd68a42411ba7c72bb75

它定义了两个类,一个时Generator的数据生成器,主要用于Generator的预训练以及计算Generator和Oracle model的相似性。另一个时Discriminator的数据生成器,主要用于Discriminator的训练。

3.3 generator

generator中定义了我们的Generator,代码结构如下:

81f7636e842f274673e3a0f616152d82163fddee

build_input:定义了我们的预训练模型和对抗过程中需要输入的数据

build_pretrain_network : 定义了Generator的预训练过程中的网络结构,其实这个网络结构在预训练,对抗和采样的过程中是一样的,参数共享。预训练过程中定义的损失是交叉熵损失。

build_adversarial_network: 定义了Generator的对抗过程的网络结构,和预训练过程共享参数,因此你可以发现代码基本上是一样的,只不过在对抗过程中的损失函数是policy gradient的损失函数,即 -log(p(xi) * v(xi):

 


self .pgen_loss_adv = - tf.reduce_sum(

tf.reduce_sum(

tf.one_hot(tf.to_int32(tf.reshape( self .input_seqs_adv,[ -1 ])), self .num_emb,on_value= 1.0 ,off_value= 0.0 )

* tf.log(tf.clip_by_value(tf.reshape( self .softmax_list_reshape,[ -1 , self .num_emb]), 1e-20 , 1.0 )), 1

) * tf.reshape( self .rewards,[ -1 ]))


build_sample_network:定义了我们Generator采样得到生成序列过程的网络结构,与前两个网络参数是共享的。

那么这三个网络是如何使用的呢?pretrain_network就是用来预训练我们的Generator的,这个没有异议。然后在对抗时的每一个epoch,首先用sample_network得到一堆采样的序列samples,然后对采样序列的对每一个时点,使用roll-out-policy结合Discriminator得到reward值。最后,把这些samples和reward值喂给adversarial_network进行参数更新。

3.4 discriminator

discriminator的文件结构如下:

e82b20577a40b5812b9322c05eb1173322b96f26

前面的linear和highway函数实现了highway network。

在Discriminator类中,我们采用CNN建立了Discriminator的网络结构,值得注意的是,我们这里采用的损失函数加入了正则项:

 

with tf.name_scope( "output" ):
W = tf.Variable(tf.truncated_normal([num_filters_total, self .num_classes],stddev = 0.1 ),name= "W" )
b = tf.Variable(tf.constant( 0.1 ,shape=[ self .num_classes]),name= 'b' )
self .l2_loss += tf.nn.l2_loss(W)
self .l2_loss += tf.nn.l2_loss(b)
self .scores = tf.nn.xw_plus_b( self .h_drop,W,b,name= 'scores' ) # batch * num_classes
self .ypred_for_auc = tf.nn.softmax( self .scores)
self .predictions = tf.argmax( self .scores, 1 ,name= 'predictions' )



with tf.name_scope( "loss" ):

losses = tf.nn.softmax_cross_entropy_with_logits(logits= self .scores,labels= self .input_y)
# 损失函数中加入了正则项
self .loss = tf.reduce_mean(losses) + self .l2_reg_lambda + self .l2_loss

3.5 rollout

这个文件实现的通过rollout-policy得到一堆完整序列的过程,前面我们提到过了,rollout-policy实现需要一个神经网络,而我们这里用Generator当作这个神经网络,所以它与前面提到的三个Generator的网络的参数也是共享的。

另外需要注意的是,我们这里要得到每个序列每个时点的采样数据,因此需要进行两层循环:

ba88369dc4f67d7c4d6b3fc59e85c6774400c665

假设我们传过来的序列长度是20,最后一个不需要进行采样,因为已经是完整的序列了。假设当前的step是5,那么0-4是不需要采样的,但我们需要把0-4位置的序列输入到网络中得到state。得到state之后,我们再经过一层循环得到5-19位的采样序列,然后将0-4位置的序列的和5-19位置的序列的进行拼接。

 

sample_rollout = tf.concat([sample_rollout_left,sample_rollout_right],axis=1)


3.6 utils

utils中定义了两个函数:

a94ff3ea25d46c3184bba4dca3c891a171ddaf30

generate_samples函数用于调用Generator中的sample_network产生sample或者用于调用target-lstm中的sample_network产生real-world数据

target_loss函数用于计算Generator和oracle model的相似性。

3.7 train

终于改介绍我们的主要流程控制代码了,先深呼吸一口,准备开始!

定义dataloader以及网络

首先,我们获取了configuration中定义的参数,然后基于这些参数,我们得到了三个dataloader。

随后,我们定义了Generator和Discriminator,以及通过读文件来创建了我们的oracle model,在代码中叫target_lstm。

 

config_train = training_config()
config_gen = generator_config()
config_dis = discriminator_config()

np.random.seed(config_train.seed)


assert config_train.start_token == 0

gen_data_loader = Gen_Data_loader(config_gen.gen_batch_size)
likelihood_data_loader = Gen_Data_loader(config_gen.gen_batch_size)
dis_data_loader = Dis_dataloader(config_dis.dis_batch_size)

generator = Generator(config=config_gen)
generator.build()

rollout_gen = rollout(config=config_gen)


#Build target LSTM

target_params = pickle.load(open( 'save/target_params.pkl' , 'rb' ),encoding= 'iso-8859-1' )
target_lstm = TARGET_LSTM(config=config_gen, params=target_params) # The oracle model



# Build discriminator

discriminator = Discriminator(config=config_dis)

discriminator.build_discriminator()

预训练Generator

我们首先定义了预训练过程中Generator的优化器,即通过AdamOptimizer来最小化交叉熵损失,随后我们通过target-lstm网络来产生Generator的训练数据,利用dataloader来读取每一个batch的数据。
同时,每隔一定的步数,我们会计算Generator与target-lstm的相似性(likelihood)

 

# Build optimizer op for pretraining
pretrained_optimizer = tf.train.AdamOptimizer(config_train.gen_learning_rate)
var_pretrained = [v for v in tf.trainable_variables() if 'teller' in v.name]
gradients, variables = zip(
*pretrained_optimizer.compute_gradients(generator.pretrained_loss, var_list=var_pretrained))
gradients, _ = tf.clip_by_global_norm(gradients, config_train.grad_clip)
gen_pre_update = pretrained_optimizer.apply_gradients(zip(gradients, variables))

sess = tf.Session()
sess.run(tf.global_variables_initializer())

generate_samples(sess,target_lstm,config_train.batch_size,config_train.generated_num,config_train.positive_file)
gen_data_loader.create_batches(config_train.positive_file)


log = open( 'save/experiment-log.txt' , 'w' )


print ( 'Start pre-training generator....' )



log.write( 'pre-training...\n' )



for epoch in range(config_train.pretrained_epoch_num):

gen_data_loader.reset_pointer()

for it in range(gen_data_loader.num_batch):

batch = gen_data_loader.next_batch()
_,g_loss = sess.run([gen_pre_update,generator.pretrained_loss],feed_dict={generator.input_seqs_pre:batch,
generator.input_seqs_mask:np.ones_like(batch)})


if epoch % config_train.test_per_epoch == 0 :

#进行测试,通过Generator产生一批序列,
generate_samples(sess,generator,config_train.batch_size,config_train.generated_num,config_train.eval_file)

# 创建这批序列的data-loader

likelihood_data_loader.create_batches(config_train.eval_file)

# 使用oracle 计算 交叉熵损失nll

test_loss = target_loss(sess,target_lstm,likelihood_data_loader)

# 打印并写入日志

print ( 'pre-train ' ,epoch, ' test_loss ' ,test_loss)
buffer = 'epoch:\t' + str(epoch) + '\tnll:\t' + str(test_loss) + '\n'
log.write(buffer)

预训练Discriminator

预训练好Generator之后,我们就可以通过Generator得到一批负样本,并结合target-lstm产生的正样本来预训练我们的Discriminator。

 


print ( 'Start pre-training discriminator...' )


for t in range(config_train.dis_update_time_pre):


print ( "Times: " + str(t))

generate_samples(sess,generator,config_train.batch_size,config_train.generated_num,config_train.negative_file)

dis_data_loader.load_train_data(config_train.positive_file,config_train.negative_file)

for _ in range(config_train.dis_update_time_pre):

dis_data_loader.reset_pointer()

for it in range(dis_data_loader.num_batch):

x_batch,y_batch = dis_data_loader.next_batch()

feed_dict = {

discriminator.input_x : x_batch,

discriminator.input_y : y_batch,

discriminator.dropout_keep_prob : config_dis.dis_dropout_keep_prob

}

_ = sess.run(discriminator.train_op,feed_dict)


定义对抗过程中Generator的优化器

这里定义的对抗过程中Generator的优化器即最小化我们前面提到的policy gradient损失,再回顾一遍:

 


self .pgen_loss_adv = - tf.reduce_sum(

tf.reduce_sum(

tf.one_hot(tf.to_int32(tf.reshape( self .input_seqs_adv,[ -1 ])), self .num_emb,on_value= 1.0 ,off_value= 0.0 )

* tf.log(tf.clip_by_value(tf.reshape( self .softmax_list_reshape,[ -1 , self .num_emb]), 1e-20 , 1.0 )), 1

) * tf.reshape( self .rewards,[ -1 ]))


 

# Build optimizer op for adversarial training
train_adv_opt = tf.train. AdamOptimizer (config_train.gen_learning_rate)
gradients, variables = zip(*train_adv_opt.compute_gradients(generator.gen_loss_adv, var_list=var_pretrained))
gradients, _ = tf.clip_by_global_norm(gradients, config_train.grad_clip)
train_adv_update = train_adv_opt.apply_gradients(zip(gradients, variables))


# Initialize global variables of optimizer for adversarial training

uninitialized_var = [e for e in tf.global_variables() if e not in tf.trainable_variables()]
init_vars_uninit_op = tf.variables_initializer(uninitialized_var)

sess.run(init_vars_uninit_op)

对抗过程中训练Generator

对抗过程中训练Generator,我们首先需要通过Generator得到一批序列sample,然后使用roll-out结合Dsicriminator得到每个序列中每个时点的reward,再将reward和sample喂给adversarial_network进行参数更新。

 

# Start adversarial training

for total_batch in range(config_train.total_batch):

for iter_gen in range(config_train.gen_update_time):
samples = sess.run(generator.sample_word_list_reshpae)

feed = { 'pred_seq_rollout:0' :samples }
reward_rollout = []

for iter_roll in range(config_train.rollout_num):

rollout_list = sess.run(rollout_gen.sample_rollout_step,feed_dict=feed)

# np.vstack 它是垂直(按照行顺序)的把数组给堆叠起来。

rollout_list_stack = np.vstack(rollout_list)

reward_rollout_seq = sess.run(discriminator.ypred_for_auc,feed_dict={

discriminator. input_x: rollout_list_stack,discriminator. dropout_keep_prob: 1.0

})

reward_last_tok = sess.run(discriminator.ypred_for_auc,feed_dict={

discriminator. input_x: samples,discriminator. dropout_keep_prob: 1.0

})

reward_allseq = np.concatenate((reward_rollout_seq,reward_last_tok),axis= 0 )[ : , 1 ]

reward_tmp = []

for r in range(config_gen.gen_batch_size):

reward_tmp.append(reward_allseq[range(r,config_gen.gen_batch_size * config_gen.sequence_length,config_gen.gen_batch_size)])


reward_rollout.append(np.array(reward_tmp))

rewards = np.sum(reward_rollout,axis = 0 ) / config_train.rollout_num

_ ,gen_loss = sess.run([train_adv_update,generator.gen_loss_adv],feed_dict={generator. input_seqs_adv: samples,
generator. rewards: rewards})

对抗过程中训练Discriminator

对抗过程中Discriminator的训练和预训练过程一样,这里就不再赘述。

 

for _ in range(config_train.dis_update_time_adv):
generate_samples(sess,generator,config_train.batch_size,config_train.generated_num,config_train.negative_file)
dis_data_loader.load_train_data(config_train.positive_file,config_train.negative_file)

for _ in range(config_train.dis_update_time_adv):
dis_data_loader.reset_pointer()

for it in range(dis_data_loader.num_batch):

x_batch,y_batch = dis_data_loader.next_batch()

feed = {

discriminator.input_x:x_batch,

discriminator.input_y:y_batch,

discriminator.dropout_keep_prob:config_dis.dis_dropout_keep_prob

}

_ = sess.run(discriminator.train_op,feed)

3.8 训练效果

来一发训练效果截图:

66f7bbc92a083c04a671c245f710529998d4a156


原文发布时间为:2018-08-21

本文作者:文文

本文来自云栖社区合作伙伴“Python爱好者社区”,了解相关信息可以关注“Python爱好者社区”。

相关文章
|
16天前
|
存储 缓存 算法
HashMap深度解析:从原理到实战
HashMap,作为Java集合框架中的一个核心组件,以其高效的键值对存储和检索机制,在软件开发中扮演着举足轻重的角色。作为一名资深的AI工程师,深入理解HashMap的原理、历史、业务场景以及实战应用,对于提升数据处理和算法实现的效率至关重要。本文将通过手绘结构图、流程图,结合Java代码示例,全方位解析HashMap,帮助读者从理论到实践全面掌握这一关键技术。
57 13
|
11天前
|
自然语言处理 搜索推荐 数据安全/隐私保护
鸿蒙登录页面好看的样式设计-HarmonyOS应用开发实战与ArkTS代码解析【HarmonyOS 5.0(Next)】
鸿蒙登录页面设计展示了 HarmonyOS 5.0(Next)的未来美学理念,结合科技与艺术,为用户带来视觉盛宴。该页面使用 ArkTS 开发,支持个性化定制和无缝智能设备连接。代码解析涵盖了声明式 UI、状态管理、事件处理及路由导航等关键概念,帮助开发者快速上手 HarmonyOS 应用开发。通过这段代码,开发者可以了解如何构建交互式界面并实现跨设备协同工作,推动智能生态的发展。
97 10
鸿蒙登录页面好看的样式设计-HarmonyOS应用开发实战与ArkTS代码解析【HarmonyOS 5.0(Next)】
|
2天前
|
存储 物联网 大数据
探索阿里云 Flink 物化表:原理、优势与应用场景全解析
阿里云Flink的物化表是流批一体化平台中的关键特性,支持低延迟实时更新、灵活查询性能、无缝流批处理和高容错性。它广泛应用于电商、物联网和金融等领域,助力企业高效处理实时数据,提升业务决策能力。实践案例表明,物化表显著提高了交易欺诈损失率的控制和信贷审批效率,推动企业在数字化转型中取得竞争优势。
29 14
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
49 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
|
11天前
|
网络协议 安全 网络安全
探索网络模型与协议:从OSI到HTTPs的原理解析
OSI七层网络模型和TCP/IP四层模型是理解和设计计算机网络的框架。OSI模型包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,而TCP/IP模型则简化为链路层、网络层、传输层和 HTTPS协议基于HTTP并通过TLS/SSL加密数据,确保安全传输。其连接过程涉及TCP三次握手、SSL证书验证、对称密钥交换等步骤,以保障通信的安全性和完整性。数字信封技术使用非对称加密和数字证书确保数据的机密性和身份认证。 浏览器通过Https访问网站的过程包括输入网址、DNS解析、建立TCP连接、发送HTTPS请求、接收响应、验证证书和解析网页内容等步骤,确保用户与服务器之间的安全通信。
57 1
|
30天前
|
PHP 开发者 容器
PHP命名空间深度解析:避免命名冲突与提升代码组织####
本文深入探讨了PHP中命名空间的概念、用途及最佳实践,揭示其在解决全局命名冲突、提高代码可维护性方面的重要性。通过生动实例和详尽分析,本文将帮助开发者有效利用命名空间来优化大型项目结构,确保代码的清晰与高效。 ####
28 1
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
86 2
|
3月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
87 0
|
9天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
9天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析

推荐镜像

更多