资源|一文解读合成数据在机器学习技术下的表现

简介:

想法

相比于数量有限的“有机”数据,我将分析、测评合成数据是否能实现改进。

动机

我对合成数据的有效性持怀疑态度——预测模型只能与用于训练数据的数据集一样好。这种怀疑论点燃了我内心的想法,即通过客观调查来研究这些直觉。

需具备的知识

本文的读者应该处于对机器学习相关理论理解的中间水平,并且应该已经熟悉以下主题以便充分理解本文:

  • 基本统计知识,例如“标准差”一词的含义

  • 熟悉神经网络,SVM和决策树(如果您只熟悉其中的一个或两个,那可能就行了)

  • 了解基本的机器学习术语,例如“训练/测试/验证集”的含义

合成数据的背景

生成合成数据的两种常用方法是:

  • 根据某些分布或分布集合绘制值

  • 个体为本模型的建模

在这项研究中,我们将检查第一类。为了巩固这个想法,让我们从一个例子开始吧!

想象一下,在只考虑大小和体重的情况下,你试图确定一只动物是老鼠,青蛙还是鸽子。但你只有一个数据集,每种动物只有两个数据。因此不幸的是,我们无法用如此小的数据集训练出好的模型!

这个问题的答案是通过估计这些特征的分布来合成更多数据。让我们从青蛙的例子开始

参考这篇维基百科的文章(只考虑成年青蛙):

https://en.wikipedia.org/wiki/Common_frog

第一个特征,即它们的平均长度(7.5cm±1.5cm),可以通过从正态分布中绘制平均值为7.5且标准偏差为1.5的值来生成。类似的技术可用于预测它们的重量。

然而,我们所掌握的信息并不包括其体重的典型范围,只知道平均值为22.7克。一个想法是使用10%(2.27g)的任意标准偏差。不幸的是,这只是纯粹猜测的结果,因此很可能不准确。

鉴于与其特征相关信息的可获得性,和基于这些特征来区分物种的容易程度,这可能足以培养良好的模型。但是,当您迁移到具有更多特征和区别更细微的陌生系统时,合成有用的数据变得更加困难。

数据

该分析使用与上面讨论的类比相同的想法。我们将创建一些具有10个特征的数据集。这些数据集将包含两个不同的分类类别,每个类别的样本数相同。

“有机”数据

每个类别将遵循其中每个特征的某种正态分布。例如,对于第一种特征:第一个类别样本的平均值为1500,标准差为360;第二个类别样本的平均值为1300,标准差为290。其余特征的分布如下:

aa38cffa7587e3f898e11ff4c69cc2e232328027

该表非常密集,但可以总结为:

  • 有四个特征在两类之间几乎无法区分,

  • 有四个特征具有明显的重叠,但在某些情况下应该可以区分,并且

  • 有两个特征只有一些重叠,通常是可区分的。

创建两个这样的数据集,一个1000样本的数据集将保留为验证集,另一个1000样本的数据集可用于训练/测试。

这会创建一个数据集,使分类变得足够强大。

合成数据

现在事情开始变得有趣了!合成数据将遵循两个自定义分布中的其中一个。第一个我称之为“ Spikes Distribution”。此分布仅允许合成特征采用少数具有每个值的特定概率的离散值。例如,如果原始分布的平均值为3且标准差为1,则尖峰(spike)可能出现在2(27%),3(46%)和4(27%)。

第二个自定义分布我称之为“ Plateaus Distribution”。这种分布只是分段均匀分布。使用平台中心的正态分布概率推导出平稳点的概率。您可以使用任意数量的尖峰或平台,当添加更多时,分布将更接近正态分布。

为了清楚说明这两个分布,可以参考下图:

199fc32696dd26424aa622ea05ecb11edd00f974

(注:尖峰分布图不是概率密度函数)

在这个问题中,合成数据的过程将成为一个非常重要的假设,它有利于使合成数据更接近于“有机”数据。该假设是每个特征/类别对的真实平均值和标准差是已知的。实际上,如果合成数据与这些值相差太远,则会严重影响训练模型的准确性。

好的,但为什么要使用这些分布?他们如何反映现实?

我很高兴你问这个问题!在有限的数据集中,您可能会注意到,对于某个类别,某个特征只会占用少量值。想象一下这些值是:

(50,75,54,49,24,58,49,64,43,36)

或者如果我们可以对这列进行排序:

(24,36,43,49,49,50,54,58,64,75)

为了生成此特征的数据,您可以将其拆分为三个部分,其中第一部分将是最小的20%,中间的60%将是第二部分,第三部分将是最大的20%。然后使用这三个部分,您可以计算它们的平均值和标准差:分别为(30,6.0),(50.5,4.6)和(69.5,5.5)。如果标准差相当低,比如大约为相应均值的10%或更小,则可以将该均值视为该部分的尖峰值。否则,您可以将该部分视为一个平台,其宽度是该部分标准差的两倍,并以该部分的平均值作为中心。

或者,换句话说,他们在模拟不完美的数据合成方面做得不错。

我将使用这些分布创建两个800样本数据集 - 一个使用尖峰,另一个使用平台。四个不同的数据集将用于训练模型,以便比较每个数据集的有用性:

  • 完整 (Full) - 完整的1000个样本有机数据集(用于了解上限)

  • 真实 (Real) - 只有20%的样本有机数据集(模拟情况而不添加合成数据)

  • 尖峰(Spike) - “真实”数据集与尖峰数据集相结合(1000个样本)

  • 平台(Plateaus) - “真实”数据集与平台数据集相结合(1000个样本)

现在开始令人兴奋的部分!

训练

为了测试每个数据集的强度,我将采用三种不同的机器学习技术:多层感知器(MLP),支持向量机(SVM)和决策树(Decision Trees)。为了帮助训练,由于某些特征的幅度比其他特征大得多,因此利用特征缩放来规范化数据。使用网格搜索调整各种模型的超参数,以最大化到达最好的超参数集的概率。

总之,我在8个不同的数据集上训练了24种不同的模型,以便了解合成数据对学习效果的影响

相关代码在这里:

https://github.com/EricLeFort/DataGen

结果

经过几个小时调整超参数并记录下精度测量结果后,出现了一些反直觉的结果!完整的结果集可以在下表中找到:

07202a1d6d9dbceffe0b2b15244bb3fa7dbb274b

在这些表中,“Spike 9”或“Plateau 9”是指分布和使用的尖峰/平台的数量。单元格中的值是使用相应的训练/测试数据对模型进行训练/测试,并用验证集验证后的的最终精度。还要记住,“完整”(Full)类别应该是准确性的理论上限,“真实”(Rea;)类别是我们在没有合成数据的情况下可以实现的基线。

一个重要的注意事项是,(几乎)每次试验的训练/测试准确度都明显高于验证准确度。例如,尽管MLP在Spike-5上得分为97.7%,但在同一试验的训练/测试数据上分别得分为100%和99%。当在现实世界中使用时,这可能导致模型有效性的过高估计。

完整的这些测量可以在GitHub找到:

https://github.com/EricLeFort/DataGen

让我们仔细看看这些结果。

首先,让我们看一下模型间的趋势(即在所有机器学习技术类型中的合成数据集类型的影响)。似乎增加更多尖峰/平台并不一定有助于学习。你可以看到在3对 5时尖峰/平台之间的一般改善,但是当看到5对9时,则要么变平或稍微倾斜。

对我来说,这似乎是违反直觉的。随着更多尖峰/平台的增加,我预计会看到几乎持续的改善,因为这会导致分布更类似于用于合成数据的正态分布。

现在,让我们看一下模型内的趋势(即各种合成数据集对特定机器学习技术的影响)。对于MLP来说,尖峰或平台是否会带来更好的性能似乎缺少规律。对于SVM,尖峰和平台似乎表现得同样好。然而,对于决策树而言,平台是一个明显的赢家。

总的来说,在使用合成数据集时,始终能观察到明显的改进!

以后的工作

需要注意的一个重要因素是,本文的结果虽然在某些方面有用,但仍然具有相当的推测性。因此,仍需要多角度的分析以便安全地做出任何明确的结论。

这里所做的一个假设是每个类别只有一个“类型”,但在现实世界中并不总是如此。例如,杜宾犬和吉娃娃都是狗,但它们的重量分布看起来非常不同。

此外,这基本上只是一种类型的数据集。应该考虑的另一个方面是尝试类似的实验,除了具有不同维度的特征空间的数据集。这可能意味着有15个特征而不是10个或模拟图像的数据集。


原文发布时间为:2018-08-22

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”。

相关文章
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
17天前
|
机器学习/深度学习 存储 人工智能
揭秘机器学习背后的神秘力量:如何高效收集数据,让AI更懂你?
【10月更文挑战第12天】在数据驱动的时代,机器学习广泛应用,从智能推荐到自动驾驶。本文以电商平台个性化推荐系统为例,探讨数据收集方法,包括明确数据需求、选择数据来源、编写代码自动化收集、数据清洗与预处理及特征工程,最终完成数据的训练集和测试集划分,为模型训练奠定基础。
32 3
|
18天前
|
机器学习/深度学习 算法 Python
“探秘机器学习的幕后英雄:梯度下降——如何在数据的海洋中寻找那枚失落的钥匙?”
【10月更文挑战第11天】梯度下降是机器学习和深度学习中的核心优化算法,用于最小化损失函数,找到最优参数。通过计算损失函数的梯度,算法沿着负梯度方向更新参数,逐步逼近最小值。常见的变种包括批量梯度下降、随机梯度下降和小批量梯度下降,各有优缺点。示例代码展示了如何用Python和NumPy实现简单的线性回归模型训练。掌握梯度下降有助于深入理解模型优化机制。
25 2
|
2月前
|
机器学习/深度学习 数据采集 监控
探索机器学习:从数据到决策
【9月更文挑战第18天】在这篇文章中,我们将一起踏上一段激动人心的旅程,穿越机器学习的世界。我们将探讨如何通过收集和处理数据,利用算法的力量来预测未来的趋势,并做出更加明智的决策。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和思考方式。
|
21天前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
27 0
|
2月前
|
机器学习/深度学习 数据可视化 JavaScript
探索机器学习模型的可视化技术
【9月更文挑战第23天】在数据科学中,理解和解释机器学习模型的决策过程是至关重要的。本文将介绍几种流行的可视化工具和库,如TensorBoard、D3.js等,帮助读者更好地理解模型内部工作原理及其预测结果。通过实例演示如何使用这些工具进行模型可视化,增强模型的可解释性。
|
2月前
|
机器学习/深度学习 数据采集 算法
利用未标记数据的半监督学习在模型训练中的效果评估
本文将介绍三种适用于不同类型数据和任务的半监督学习方法。我们还将在一个实际数据集上评估这些方法的性能,并与仅使用标记数据的基准进行比较。
168 8
|
28天前
|
机器学习/深度学习 算法 数据建模
【机器学习】类别不平衡数据的处理
【机器学习】类别不平衡数据的处理
|
3月前
|
图形学 机器学习/深度学习 人工智能
颠覆传统游戏开发,解锁未来娱乐新纪元:深度解析如何运用Unity引擎结合机器学习技术,打造具备自我进化能力的智能游戏角色,彻底改变你的游戏体验——从基础设置到高级应用全面指南
【8月更文挑战第31天】本文探讨了如何在Unity中利用机器学习增强游戏智能。作为领先的游戏开发引擎,Unity通过ML-Agents Toolkit等工具支持AI代理的强化学习训练,使游戏角色能自主学习完成任务。文章提供了一个迷宫游戏示例及其C#脚本,展示了环境观察、动作响应及奖励机制的设计,并介绍了如何设置训练流程。此外,还提到了Unity与其他机器学习框架(如TensorFlow和PyTorch)的集成,以实现更复杂的游戏玩法。通过这些技术,游戏的智能化程度得以显著提升,为玩家带来更丰富的体验。
59 1
|
3月前
|
缓存 开发者 测试技术
跨平台应用开发必备秘籍:运用 Uno Platform 打造高性能与优雅设计兼备的多平台应用,全面解析从代码共享到最佳实践的每一个细节
【8月更文挑战第31天】Uno Platform 是一种强大的工具,允许开发者使用 C# 和 XAML 构建跨平台应用。本文探讨了 Uno Platform 中实现跨平台应用的最佳实践,包括代码共享、平台特定功能、性能优化及测试等方面。通过共享代码、采用 MVVM 模式、使用条件编译指令以及优化性能,开发者可以高效构建高质量应用。Uno Platform 支持多种测试方法,确保应用在各平台上的稳定性和可靠性。这使得 Uno Platform 成为个人项目和企业应用的理想选择。
52 0