自己动手写SQL查询引擎-总篇

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
全局流量管理 GTM,标准版 1个月
简介:

自己动手写SQL查询引擎-总篇

本篇Blog在总体层面介绍了SQL查询引擎Rider的功能及设计,其细节部分将会在后面的篇章中一一道来。

起因

笔者在实际工作中经常需要解析文件,每次文件稍有变化,都得拷贝粘贴一堆代码。
于是就想着能不能做一个通用的服务,通过配置的方式解析文件。

配置通用

最通用的方法就是自己定义一个文件描述语言,用语言去描述文件的组织结构。但如果自己定义一套新的语法,学习成本则太高。

基于SQL

于是就想到了数据库,数据库是通过create table来表示文件格式的,且通过sql来查询底层数据。
这个create table和select操作和我的需求match,就这样SQL查询引擎Rider诞生了。

Rider代码灵感

Rider借鉴了不少项目的代码,例如MySql协议部分借鉴了Corbar。
Sql解析部分借鉴了h2database,derby等。
文件解析部分源于笔者写的大部分文件解析业务代码。
在此向上述优秀的开源代码致敬。

SQL查询引擎Rider

Rider是一个基于Netty通讯框架的纯java写的Server,其不依赖其它任何服务。其主要功能如下图所示:
rider_func
(1)Rider基于MySql协议和用户交互,用户可以使用mysqlClient、jdbc以及odbc等对Rider发送SQL命令
(2)Rider支持select join where condition、create table等语法
(3)Rider支持MyBatis

Rider总体设计

rider_archetype
这里Rider主要分四层:
(1)MySql协议层,负责通过MySql协议与用户的交互,详情可见:
https://my.oschina.net/alchemystar/blog/834150
(2)Sql解析层:负责对select以及create table等语法的解析
(3)Access层:提供游标Cursor这个概念,供Sql解析层去遍历记录
(4)Storage层:对很多中文件格式进行解析,统一封装成游标Cursor给上层调用,
当前Storage还包含了视图的概念,这是Rider另一个特性,在后面的篇章中阐述。

Rider查询表的原理

下图是Rider查询表的原理,
rider_execute
Rider查询表的原理是通过将文件中所有记录读取出来并通过where或者join条件进行遍历,从而筛选出对应的记录。
对于多表查询,则是通过将多个文件中的记录进行笛卡尔积的便利来筛选记录。

Rider文件配置的通用性

文件列位置不定

详细描述:文件A,文件B包含相同的数据,只是列的位置不一样,例如:
文件A:

1,lancer,lancer_comment   
2,rider,rider_comment

文件B:

1.lancer_comment,lancer    
2,rider,rider_comment  

在Rider中只需要在不同的schema中建立两张相同的表t_test,就可以在应用端代码复用,底层细节的Rider全包了。

use schemaA;
create table t_test( 
  id BIGINT comment 'id test ', 
  name VARCHAR comment 'name',
  extension VARCHAR comment 'extension' 
)Engine='archer' SEP=',' comment='just for test';
use schemaB;
 create table t_test( 
  id BIGINT comment 'id test ', 
  extension VARCHAR comment 'extension' /*此处列位置调整*/
  name VARCHAR comment 'name',
)Engine='archer' SEP=',' comment='just for test'

这样客户端就可以不考虑文件列的位置了。

文件格式不固定

考虑到三个文件,文件A、文件B以及文件C
文件A,以,分隔:

1,lancer,lancer_comment   
2,rider,rider_comment

文件B,以|分隔:

1|lancer|lancer_comment   
2|rider|rider_comment

文件C,XLSX格式

use schemaA;
create table t_test( 
  id BIGINT comment 'id test ', 
  name VARCHAR comment 'name',
  extension VARCHAR comment 'extension' 
)Engine='archer' SEP=',' comment='just for test';
use schemaB;
 create table t_test( 
  id BIGINT comment 'id test ', 
  name VARCHAR comment 'name',
  extension VARCHAR comment 'extension' 
)Engine='archer' SEP='|' /*此处分隔符调整为|*/  comment='just for test'
use schemaC;
create table t_test( 
  id BIGINT comment 'id test ', 
  name VARCHAR comment 'name',
  extension VARCHAR comment 'extension' 
)Engine='XLSX'/*此处引擎调整为xlsx*/;

这样客户端也不需要考虑文件格式了。
如果上述不直观的话,可以如下图所示:
rider_file

Rider性能

文件解析速度4W行/s,其只和java本身文件IO性能相关。

Rider截图

rider_example

github链接

https://github.com/alchemystar/Rider

码云链接

http://git.oschina.net/alchemystar/Rider

原文链接

https://my.oschina.net/alchemystar/blog/865237

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
8天前
|
SQL NoSQL Java
Java使用sql查询mongodb
通过使用 MongoDB Connector for BI 和 JDBC,开发者可以在 Java 中使用 SQL 语法查询 MongoDB 数据库。这种方法对于熟悉 SQL 的团队非常有帮助,能够快速实现对 MongoDB 数据的操作。同时,也需要注意到这种方法的性能和功能限制,根据具体应用场景进行选择和优化。
33 9
|
29天前
|
SQL 存储 人工智能
Vanna:开源 AI 检索生成框架,自动生成精确的 SQL 查询
Vanna 是一个开源的 Python RAG(Retrieval-Augmented Generation)框架,能够基于大型语言模型(LLMs)为数据库生成精确的 SQL 查询。Vanna 支持多种 LLMs、向量数据库和 SQL 数据库,提供高准确性查询,同时确保数据库内容安全私密,不外泄。
102 7
Vanna:开源 AI 检索生成框架,自动生成精确的 SQL 查询
|
9天前
|
SQL 存储 缓存
日志服务 SQL 引擎全新升级
SQL 作为 SLS 基础功能,每天承载了用户大量日志数据的分析请求,既有小数据量的快速查询(如告警、即席查询等);也有上万亿数据规模的报表级分析。SLS 作为 Serverless 服务,除了要满足不同用户的各类需求,还要兼顾性能、隔离性、稳定性等要求。过去一年多的时间,SLS SQL 团队做了大量的工作,对 SQL 引擎进行了全新升级,SQL 的执行性能、隔离性等方面都有了大幅的提升。
|
2月前
|
SQL Java
使用java在未知表字段情况下通过sql查询信息
使用java在未知表字段情况下通过sql查询信息
39 8
|
2月前
|
SQL 安全 PHP
PHP开发中防止SQL注入的方法,包括使用参数化查询、对用户输入进行过滤和验证、使用安全的框架和库等,旨在帮助开发者有效应对SQL注入这一常见安全威胁,保障应用安全
本文深入探讨了PHP开发中防止SQL注入的方法,包括使用参数化查询、对用户输入进行过滤和验证、使用安全的框架和库等,旨在帮助开发者有效应对SQL注入这一常见安全威胁,保障应用安全。
63 4
|
2月前
|
SQL 监控 关系型数据库
SQL语句当前及历史信息查询-performance schema的使用
本文介绍了如何使用MySQL的Performance Schema来获取SQL语句的当前和历史执行信息。Performance Schema默认在MySQL 8.0中启用,可以通过查询相关表来获取详细的SQL执行信息,包括当前执行的SQL、历史执行记录和统计汇总信息,从而快速定位和解决性能瓶颈。
|
2月前
|
SQL 存储 缓存
如何优化SQL查询性能?
【10月更文挑战第28天】如何优化SQL查询性能?
168 10
|
2月前
|
SQL 关系型数据库 MySQL
|
3月前
|
SQL 数据库 开发者
功能发布-自定义SQL查询
本期主要为大家介绍ClkLog九月上线的新功能-自定义SQL查询。
|
2月前
|
SQL 关系型数据库 MySQL
mysql编写sql脚本:要求表没有主键,但是想查询没有相同值的时候才进行插入
mysql编写sql脚本:要求表没有主键,但是想查询没有相同值的时候才进行插入
37 0