独家|一文解读合成数据在机器学习技术下的表现

简介:

想法

相比于数量有限的“有机”数据,我将分析、测评合成数据是否能实现改进。

动机

我对合成数据的有效性持怀疑态度——预测模型只能与用于训练数据的数据集一样好。这种怀疑论点燃了我内心的想法,即通过客观调查来研究这些直觉。

需具备的知识

本文的读者应该处于对机器学习相关理论理解的中间水平,并且应该已经熟悉以下主题以便充分理解本文:

• 基本统计知识,例如“标准差”一词的含义
• 熟悉神经网络,SVM和决策树(如果您只熟悉其中的一个或两个,那可能就行了)
• 了解基本的机器学习术语,例如“训练/测试/验证集”的含义

合成数据的背景

生成合成数据的两种常用方法是:

• 根据某些分布或分布集合绘制值
• 个体为本模型的建模

在这项研究中,我们将检查第一类。为了巩固这个想法,让我们从一个例子开始吧!

想象一下,在只考虑大小和体重的情况下,你试图确定一只动物是老鼠,青蛙还是鸽子。但你只有一个数据集,每种动物只有两个数据。因此不幸的是,我们无法用如此小的数据集训练出好的模型!

这个问题的答案是通过估计这些特征的分布来合成更多数据。让我们从青蛙的例子开始

参考这篇维基百科的文章:

https://en.wikipedia.org/wiki/Common_frog ,只考虑成年青蛙。

第一个特征,即它们的平均长度(7.5cm±1.5cm),可以通过从正态分布中绘制平均值为7.5且标准偏差为1.5的值来生成。类似的技术可用于预测它们的重量。然而,我们所掌握的信息并不包括其体重的典型范围,只知道平均值为22.7克。一个想法是使用10%(2.27g)的任意标准偏差。不幸的是,这只是纯粹猜测的结果,因此很可能不准确。

鉴于与其特征相关信息的可获得性,和基于这些特征来区分物种的容易程度,这可能足以培养良好的模型。但是,当您迁移到具有更多特征和区别更细微的陌生系统时,合成有用的数据变得更加困难。

数据

该分析使用与上面讨论的类比相同的想法。我们将创建一些具有10个特征的数据集。这些数据集将包含两个不同的分类类别,每个类别的样本数相同。

“有机”数据

每个类别将遵循其中每个特征的某种正态分布。例如,对于第一种特征:第一个类别样本的平均值为1500,标准差为360;第二个类别样本的平均值为1300,标准差为290。其余特征的分布如下:

2f778e2569b9fe5dd548228cbb8d2ec4c8fdcb6e

该表非常密集,但可以总结为:
• 有四个特征在两类之间几乎无法区分,
• 有四个特征具有明显的重叠,但在某些情况下应该可以区分,并且
• 有两个特征只有一些重叠,通常是可区分的。

创建两个这样的数据集,一个1000样本的数据集将保留为验证集,另一个1000样本的数据集可用于训练/测试。

这会创建一个数据集,使分类变得足够强大。

合成数据

现在事情开始变得有趣了!合成数据将遵循两个自定义分布中的其中一个。第一个我称之为“ Spikes Distribution”。此分布仅允许合成特征采用少数具有每个值的特定概率的离散值。例如,如果原始分布的平均值为3且标准差为1,则尖峰(spike)可能出现在2(27%),3(46%)和4(27%)。

第二个自定义分布我称之为“ Plateaus Distribution”。这种分布只是分段均匀分布。使用平台中心的正态分布概率推导出平稳点的概率。您可以使用任意数量的尖峰或平台,当添加更多时,分布将更接近正态分布。

为了清楚说明这两个分布,可以参考下图:

059ba5b9f63538a96021ea475e2df31254787022

(注:尖峰分布图不是概率密度函数)

在这个问题中,合成数据的过程将成为一个非常重要的假设,它有利于使合成数据更接近于“有机”数据。该假设是每个特征/类别对的真实平均值和标准差是已知的。实际上,如果合成数据与这些值相差太远,则会严重影响训练模型的准确性。

好的,但为什么要使用这些分布?他们如何反映现实?

我很高兴你问这个问题!在有限的数据集中,您可能会注意到,对于某个类别,某个特征只会占用少量值。想象一下这些值是:

(50,75,54,49,24,58,49,64,43,36)

或者如果我们可以对这列进行排序:

(24,36,43,49,49,50,54,58,64,75)

为了生成此特征的数据,您可以将其拆分为三个部分,其中第一部分将是最小的20%,中间的60%将是第二部分,第三部分将是最大的20%。然后使用这三个部分,您可以计算它们的平均值和标准差:分别为(30,6.0),(50.5,4.6)和(69.5,5.5)。如果标准差相当低,比如大约为相应均值的10%或更小,则可以将该均值视为该部分的尖峰值。否则,您可以将该部分视为一个平台,其宽度是该部分标准差的两倍,并以该部分的平均值作为中心。

或者,换句话说,他们在模拟不完美的数据合成方面做得不错。

我将使用这些分布创建两个800样本数据集 - 一个使用尖峰,另一个使用平台。四个不同的数据集将用于训练模型,以便比较每个数据集的有用性:

• 完整 (Full) - 完整的1000个样本有机数据集(用于了解上限)
• 真实 (Real) - 只有20%的样本有机数据集(模拟情况而不添加合成数据)
• 尖峰(Spike) - “真实”数据集与尖峰数据集相结合(1000个样本)
• 平台(Plateaus) - “真实”数据集与平台数据集相结合(1000个样本)

现在开始令人兴奋的部分!

训练

为了测试每个数据集的强度,我将采用三种不同的机器学习技术:多层感知器(MLP),支持向量机(SVM)和决策树(Decision Trees)。为了帮助训练,由于某些特征的幅度比其他特征大得多,因此利用特征缩放来规范化数据。使用网格搜索调整各种模型的超参数,以最大化到达最好的超参数集的概率。

总之,我在8个不同的数据集上训练了24种不同的模型,以便了解合成数据对学习效果的影响。

相关代码在这里:https://github.com/EricLeFort/DataGen

结果

经过几个小时调整超参数并记录下精度测量结果后,出现了一些反直觉的结果!完整的结果集可以在下表中找到:

多层感知器(MLP)

6575ee491d10b39a704404c386b8a388dc786884

支持向量机(SVM)
9b24182d77d9fc270c8c005fdcb52ff74a927d78

决策树(Decision Trees)

7f486edac0d9c1b7523131109d396eb2c2cac469

在这些表中,“Spike 9”或“Plateau 9”是指分布和使用的尖峰/平台的数量。单元格中的值是使用相应的训练/测试数据对模型进行训练/测试,并用验证集验证后的的最终精度。还要记住,“完整”(Full)类别应该是准确性的理论上限,“真实”(Rea;)类别是我们在没有合成数据的情况下可以实现的基线。
一个重要的注意事项是,(几乎)每次试验的训练/测试准确度都明显高于验证准确度。例如,尽管MLP在Spike-5上得分为97.7%,但在同一试验的训练/测试数据上分别得分为100%和99%。当在现实世界中使用时,这可能导致模型有效性的过高估计。
完整的这些测量可以在GitHub找到:
https://github.com/EricLeFort/DataGen

让我们仔细看看这些结果。

首先,让我们看一下模型间的趋势(即在所有机器学习技术类型中的合成数据集类型的影响)。似乎增加更多尖峰/平台并不一定有助于学习。你可以看到在3对 5时尖峰/平台之间的一般改善,但是当看到5对9时,则要么变平或稍微倾斜。

对我来说,这似乎是违反直觉的。随着更多尖峰/平台的增加,我预计会看到几乎持续的改善,因为这会导致分布更类似于用于合成数据的正态分布。

现在,让我们看一下模型内的趋势(即各种合成数据集对特定机器学习技术的影响)。对于MLP来说,尖峰或平台是否会带来更好的性能似乎缺少规律。对于SVM,尖峰和平台似乎表现得同样好。然而,对于决策树而言,平台是一个明显的赢家。

总的来说,在使用合成数据集时,始终能观察到明显的改进!

以后的工作

需要注意的一个重要因素是,本文的结果虽然在某些方面有用,但仍然具有相当的推测性。因此,仍需要多角度的分析以便安全地做出任何明确的结论。

这里所做的一个假设是每个类别只有一个“类型”,但在现实世界中并不总是如此。例如,杜宾犬和吉娃娃都是狗,但它们的重量分布看起来非常不同。

此外,这基本上只是一种类型的数据集。应该考虑的另一个方面是尝试类似的实验,除了具有不同维度的特征空间的数据集。这可能意味着有15个特征而不是10个或模拟图像的数据集。

我计划继续研究以扩大本研究的范围,敬请期待!

关于作者

Eric拥有软件工程学士学位和机器学习硕士学位。他目前在加拿大多伦多担任机器学习工程师。他曾使用LSTM,CNN,决策树集合,SVM等工作解决与NLP,计算机视觉和商业智能系统相关的问题!


原文发布时间为:2018-08-20

本文作者:数据派

本文来自云栖社区合作伙伴“数据派THU”,了解相关信息可以关注“数据派THU”。

相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
12天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
42 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
14天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
模型训练数据-MinerU一款Pdf转Markdown软件
MinerU是由上海人工智能实验室OpenDataLab团队开发的开源智能数据提取工具,专长于复杂PDF文档的高效解析与提取。它能够将含有图片、公式、表格等多模态内容的PDF文档转化为Markdown格式,同时支持从网页和电子书中提取内容,显著提升了AI语料准备的效率。MinerU具备高精度的PDF模型解析工具链,能自动识别乱码,保留文档结构,并将公式转换为LaTeX格式,广泛适用于学术、财务、法律等领域。
113 4
|
29天前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
51 6
|
1月前
|
机器学习/深度学习 搜索推荐 算法
在数字化时代,推荐系统成为互联网应用的重要组成部分,通过机器学习技术根据用户兴趣和行为提供个性化推荐,提升用户体验
在数字化时代,推荐系统成为互联网应用的重要组成部分,通过机器学习技术根据用户兴趣和行为提供个性化推荐,提升用户体验。本文探讨了推荐系统的基本原理、常用算法、实现步骤及Python应用,介绍了如何克服数据稀疏性、冷启动等问题,强调了合理选择算法和持续优化的重要性。
69 4
|
1月前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的自然语言处理技术
【10月更文挑战第38天】在本文中,我们将深入探讨自然语言处理(NLP)技术及其在机器学习领域的应用。通过浅显易懂的语言和生动的比喻,我们将揭示NLP技术的奥秘,包括其工作原理、主要任务以及面临的挑战。此外,我们还将分享一些实用的代码示例,帮助您更好地理解和掌握这一技术。无论您是初学者还是有经验的开发者,相信您都能从本文中获得宝贵的知识和启示。
39 3
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
116 11
|
1月前
|
机器学习/深度学习 数据采集 数据处理
谷歌提出视觉记忆方法,让大模型训练数据更灵活
谷歌研究人员提出了一种名为“视觉记忆”的方法,结合了深度神经网络的表示能力和数据库的灵活性。该方法将图像分类任务分为图像相似性和搜索两部分,支持灵活添加和删除数据、可解释的决策机制以及大规模数据处理能力。实验结果显示,该方法在多个数据集上取得了优异的性能,如在ImageNet上实现88.5%的top-1准确率。尽管有依赖预训练模型等限制,但视觉记忆为深度学习提供了新的思路。
34 2
|
1月前
|
机器学习/深度学习 数据可视化 算法
机器学习中的特征选择与降维技术
机器学习中的特征选择与降维技术
71 0

热门文章

最新文章