[雪峰磁针石博客]使用pandas数据分析工具处理excel

简介: pandas有强大的excel数据处理和导入处理功能,本文简单介绍pandas在csv和excel等格式方面处理的应用及绘制图表等功能。 pandas处理excel依赖xlutils, OpenPyXL, XlsxWriter等库。

pandas有强大的excel数据处理和导入处理功能,本文简单介绍pandas在csv和excel等格式方面处理的应用及绘制图表等功能。

pandas处理excel依赖xlutils, OpenPyXL, XlsxWriter等库。

pandas数据读取概述

读写文本

Function Description
read_csv Load delimited data from a file, URL, or file-like object; use comma as default delimiter
read_table Load delimited data from a file, URL, or file-like object; use tab ('\t') as default delimiter
read_fwf Read data in fixed-width column format (i.e., no delimiters)
read_clipboard Version of Read_table that Reads data from the clipboard; useful for converting tables from web pages
read_excel Read tabular data from an Excel XLS or XLSX file
read_hdf Read HDF5 files written by pandas
read_html Read all tables found in the given HTML document
read_json Read data from a JSON (JavaScript Object Notation) string representation
read_msgpack Read pandas data encoded using the MessagePack binary format
read_pickle Read an arbitrary object stored in Python pickle format
read_sas Read a SAS dataset stored in one of the SAS system’s custom storage formats
read_sql Read the results of a SQL query (using SQLAlchemy) as a pandas DataFrame
read_stata Read a dataset from Stata file format
read_feather Read the Feather binary file format

参数主要涉及索引、类型推理和数据转换、日期时间处理、迭代、脏数据。

ex1.csv的内容如下:


a,b,c,d,message
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo

读取:


In [9]: df = pd.read_csv('examples/ex1.csv')
In [10]: df
Out[10]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo

还可以改用read_table读取


In [11]: pd.read_table('examples/ex1.csv', sep=',')
Out[11]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo

ex2.csv的内容如下:


1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo

可以使用header=None表示没有列名,也可以用names自行指定列名,还可以使用index_col将列作为索引。


In [13]: pd.read_csv('examples/ex2.csv', header=None)
Out[13]:
0 1 2 3 4
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo

In [14]: pd.read_csv('examples/ex2.csv', names=['a', 'b', 'c', 'd', 'message'])
Out[14]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
6.1

In [15]: names = ['a', 'b', 'c', 'd', 'message']
In [16]: pd.read_csv('examples/ex2.csv', names=names, index_col='message')
Out[16]:
a b c d
message
hello 1 2 3 4
world 5 6 7 8
foo 9 10 11 12

csv_mindex.csv的内容:


key1,key2,value1,value2
one,a,1,2
one,b,3,4
one,c,5,6
one,d,7,8
two,a,9,10
two,b,11,12
two,c,13,14
two,d,15,16

建立层级索引:


In [18]: parsed = pd.read_csv('examples/csv_mindex.csv',
....: index_col=['key1', 'key2'])
In [19]: parsed
Out[19]:
value1 value2
key1 key2
one a 1 2
b 3 4
c 5 6
d 7 8
two a 9 10
b 11 12
c 13 14
d 15 16

用正则表达式处理混合的分隔符:


In [20]: list(open('examples/ex3.txt'))
Out[20]:
[' A B C\n',
'aaa -0.264438 -1.026059 -0.619500\n',
'bbb 0.927272 0.302904 -0.032399\n',
'ccc -0.264273 -0.386314 -0.217601\n',
'ddd -0.871858 -0.348382 1.100491\n']

In [21]: result = pd.read_table('examples/ex3.txt', sep='\s+')
In [22]: result
Out[22]:
A B C
aaa -0.264438 -1.026059 -0.619500
bbb 0.927272 0.302904 -0.032399
ccc -0.264273 -0.386314 -0.217601
ddd -0.871858 -0.348382 1.100491

ex4.csv的内容:


# hey!
a,b,c,d,message
# just wanted to make things more difficult for you
# who reads CSV files with computers, anyway?
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo

skiprows可以忽略行


In [24]: pd.read_csv('examples/ex4.csv', skiprows=[0, 2, 3])
Out[24]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo

ex5.csv的内容:


something,a,b,c,d,message
one,1,2,3,4,NA
two,5,6,,8,world
three,9,10,11,12,foo

可以指定哪些值为缺失值,甚至可以针对行指定缺失值。


In [26]: result = pd.read_csv('examples/ex5.csv')
In [27]: result
Out[27]:
something a b c d message
0 one 1 2 3.0 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11.0 12 foo
In [28]: pd.isnull(result)
Out[28]:
something a b c d message
0 False False False False False True
1 False False False True False False
2 False False False False False False

In [29]: result = pd.read_csv('examples/ex5.csv', na_values=['NULL'])
In [30]: result
Out[30]:
something a b c d message
0 one 1 2 3.0 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11.0 12 foo

In [31]: sentinels = {'message': ['foo', 'NA'], 'something': ['two']}
In [32]: pd.read_csv('examples/ex5.csv', na_values=sentinels)
Out[32]:
something a b c d message
0 one 1 2 3.0 4 NaN
1 NaN 5 6 NaN 8 world
2 three 9 10 11.0 12 NaN

pandas.read_csv和pandas.read_table的常用参数如下:

Argument Description
path String indicating filesystem location, URL, or file-like object
sep or delimiter Character sequence or regular expression to use to split fields in each row
header Row number to use as column names; defaults to 0 (first row), but should be None if there is no header row。
index_col Column numbers or names to use as the row index in the result; can be a single name/number or alist of them for a hierarchical index
names List of column names for result, combine with header=None
skiprows Number of rows at beginning of file to ignore or list of row numbers (starting from 0) to skip.
na_values Sequence of values to replace with NA.
comment Character(s) to split comments off the end of lines.
parse_dates Attempt to parse data to datetime; False by default. If True, will attempt to parse all columns.Otherwise can specify a list of column numbers or name to parse. If element of list is tuple or list, willcombine multiple columns together and parse to date (e.g., if date/time split across two columns).
keep_date_col If joining columns to parse date, keep the joined columns; False by default.
converters Dict containing column number of name mapping to functions (e.g., {'foo': f} would apply the function f to all values in the 'foo' column).
dayfirst When parsing potentially ambiguous dates, treat as international format (e.g., 7/6/2012 -> June 7,2012); False by default.
date_parser Function to use to parse dates.
nrows Number of rows to read from beginning of file.
iterator Return a TextParser object for reading file piecemeal.
chunksize For iteration, size of file chunks.
skip_footer Number of lines to ignore at end of file.
verbose Print various parser output information, like the number of missing values placed in non-numericcolumns.
encoding Text encoding for Unicode (e.g., 'utf-8' for UTF-8 encoded text).
squeeze If the parsed data only contains one column, return a Series.
thousands Separator for thousands (e.g., ',' or '.').

参考资料:

更多参考:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

CSV

使用pandas读写csv

pandas_parsing_and_write.py


import pandas as pd

input_file = r"supplier_data.csv"
output_file = r"output_files\1output.csv"

data_frame = pd.read_csv(input_file)
print(data_frame)
data_frame.to_csv(output_file, index=False)

当然也可以用python实现:

1csv_simple_parsing_and_write.py


input_file = r"supplier_data.csv"
output_file = r"output_files\1output.csv"

with open(input_file, newline='') as filereader:
    with open(output_file, 'w', newline='') as filewriter:
        for row in filereader:
            filewriter.write(row)

2csv_reader_parsing_and_write.py


import csv

input_file = r"supplier_data.csv"
output_file = r"output_files\2output.csv"

with open(input_file, 'r', newline='') as csv_in_file:
    with open(output_file, 'w', newline='') as csv_out_file:
        filereader = csv.reader(csv_in_file, delimiter=',')
        filewriter = csv.writer(csv_out_file, delimiter=',')
        for row_list in filereader:
            filewriter.writerow(row_list)

过滤特定行

  • 选择供应商名字包含Z或者Cost大于600的行

pandas_value_meets_condition.py


import pandas as pd

input_file = r"supplier_data.csv"
output_file = r"output_files\3output.csv"

data_frame = pd.read_csv(input_file)

data_frame['Cost'] = data_frame['Cost'].str.strip('$').astype(float)
data_frame_value_meets_condition = data_frame.loc[(data_frame['Supplier Name']\
.str.contains('Z')) | (data_frame['Cost'] > 600.0), :]

data_frame_value_meets_condition.to_csv(output_file, index=False)

注意pandas的strip连里面的内容都可以清除, 有点类似replace的功能。

  • 选择符合一个集合的数据:

选择日期为'1/20/14', '1/30/14'的行


import pandas as pd

input_file = r"supplier_data.csv"
output_file = r"output_files\4output.csv"

data_frame = pd.read_csv(input_file)

important_dates = ['1/20/14', '1/30/14']
data_frame_value_in_set = data_frame.loc[data_frame['Purchase Date']\
.isin(important_dates), :]

data_frame_value_in_set.to_csv(output_file, index=False)
  • 用正则表达式选择数据

pandas_value_matches_pattern.py


import pandas as pd

input_file = r"supplier_data.csv"
output_file = r"output_files\4output.csv"

data_frame = pd.read_csv(input_file)
data_frame_value_matches_pattern = data_frame.ix[data_frame['Invoice Number']\
.str.startswith("001-"), :]

data_frame_value_matches_pattern.to_csv(output_file, index=False)

过滤特定列

  • 选择0,3列

pandas_column_by_index.py


import pandas as pd
import sys

input_file = r"supplier_data.csv"
output_file = r"output_files\6output.csv"

data_frame = pd.read_csv(input_file)
data_frame_column_by_index = data_frame.iloc[:, [0, 3]]
data_frame_column_by_index.to_csv(output_file, index=False)

pandas_column_by_index.py


import pandas as pd

input_file = r"supplier_data.csv"
output_file = r"output_files\7output.csv"

data_frame = pd.read_csv(input_file)
data_frame_column_by_name = data_frame.loc[
    :, ['Invoice Number', 'Purchase Date']]
data_frame_column_by_name.to_csv(output_file, index=False)

pandas_select_contiguous_rows.py


import pandas as pd

input_file = r"supplier_data_unnecessary_header_footer.csv"
output_file = r"output_files\11output.csv"

data_frame = pd.read_csv(input_file, header=None)
data_frame = data_frame.drop([0,1,2,16,17,18])
data_frame.columns = data_frame.iloc[0]
data_frame = data_frame.reindex(data_frame.index.drop(3))
data_frame.to_csv(output_file, index=False)

添加行头

pandas_add_header_row.py


import pandas as pd

input_file = r"supplier_data_no_header_row.csv"
output_file = r"output_files\11output.csv"
header_list = ['Supplier Name', 'Invoice Number', \
'Part Number', 'Cost', 'Purchase Date']
data_frame = pd.read_csv(input_file, header=None, names=header_list)
data_frame.to_csv(output_file, index=False)

合并多个文件

pandas_concat_rows_from_multiple_files.py


import pandas as pd
import glob
import os

input_path = r"D:\code\foundations-for-analytics-with-python\csv"
output_file = r"output_files\12output.csv"

all_files = glob.glob(os.path.join(input_path,'sales_*'))
all_data_frames = []
for file in all_files:
    data_frame = pd.read_csv(file, index_col=None)
    all_data_frames.append(data_frame)
data_frame_concat = pd.concat(all_data_frames, axis=0, ignore_index=True)
data_frame_concat.to_csv(output_file, index = False)

求和和求平均值

pandas_sum_average_from_multiple_files.py


import pandas as pd
import glob
import os

input_path = r"D:\code\foundations-for-analytics-with-python\csv"
output_file = r"output_files\12output.csv"

all_files = glob.glob(os.path.join(input_path,'sales_*'))
all_data_frames = []
for input_file in all_files:
    print(input_file)
    data_frame = pd.read_csv(input_file, index_col=None)
    
    print(data_frame)
    
    sales = pd.DataFrame([float(str(value).strip('$').replace(',','')) 
      for value in data_frame.loc[:, 'Sale Amount']])
    
    total_cost = sales.sum()
    average_cost = sales.mean()

    data = {'file_name': os.path.basename(input_file),
            'total_sales': total_cost,
            'average_sales': average_cost}

    all_data_frames.append(pd.DataFrame(
        data, columns=['file_name', 'total_sales', 'average_sales']))

data_frames_concat = pd.concat(all_data_frames, axis=0, ignore_index=True)
data_frames_concat.to_csv(output_file, index = False)

XLS

使用pandas读写xls

pandas_parsing_and_write_keep_dates.py


import pandas as pd

input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"
data_frame = pd.read_excel(input_file, sheetname='january_2013')

writer = pd.ExcelWriter(output_file)
data_frame.to_excel(writer, sheet_name='jan_13_output', index=False)
writer.save()

过滤特定行

  • 销售额大于1400的记录

pandas_value_meets_condition.py


import pandas as pd

input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"

data_frame = pd.read_excel(input_file, 'january_2013', index_col=None)
data_frame_value_meets_condition = \
    data_frame[data_frame['Sale Amount'].astype(float) > 1400.0]

writer = pd.ExcelWriter(output_file)
data_frame_value_meets_condition.to_excel(
    writer, sheet_name='jan_13_output', index=False)
writer.save()
  • 指定日期的

pandas_value_in_set.py


import string

input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"

data_frame = pd.read_excel(input_file, 'january_2013', index_col=None)

important_dates = ['01/24/2013','01/31/2013']
data_frame_value_in_set = data_frame[data_frame['Purchase Date'].isin(important_dates)]

writer = pd.ExcelWriter(output_file)
data_frame_value_in_set.to_excel(writer, sheet_name='jan_13_output', index=False)
writer.save()
  • 其他条件

startswith , endswith , match和search等。

pandas_value_matches_pattern.py


import pandas as pd

input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"

data_frame = pd.read_excel(input_file, 'january_2013', index_col=None)

data_frame_value_matches_pattern = data_frame[
    data_frame['Customer Name'].str.startswith("J")]

writer = pd.ExcelWriter(output_file)
data_frame_value_matches_pattern.to_excel(
    writer, sheet_name='jan_13_output', index=False)
writer.save()

选取特定列

  • iloc基于index选取第2和第5列

import pandas as pd

input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"

data_frame = pd.read_excel(input_file, 'january_2013', index_col=None)

data_frame_column_by_index = data_frame.iloc[:, [1, 4]]

writer = pd.ExcelWriter(output_file)
data_frame_column_by_index.to_excel(
    writer, sheet_name='jan_13_output', index=False)
writer.save()
  • loc基于列名选取第2和第5列

pandas_column_by_name.py


import pandas as pd

input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"

data_frame = pd.read_excel(input_file, 'january_2013', index_col=None)

data_frame_column_by_name = data_frame.loc[:, ['Customer ID', 'Purchase Date']]

writer = pd.ExcelWriter(output_file)
data_frame_column_by_name.to_excel(
    writer, sheet_name='jan_13_output', index=False)
writer.save()

操作所有sheet

  • 选取销售额大于2000的行

pandas_value_meets_condition_all_worksheets.py


import pandas as pd

input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"

data_frame = pd.read_excel(input_file, sheetname=None, index_col=None)

row_output = []
for worksheet_name, data in data_frame.items():
    row_output.append(data[data['Sale Amount'].replace('$', '').
                           replace(',', '').astype(float) > 2000.0])
filtered_rows = pd.concat(row_output, axis=0, ignore_index=True)

writer = pd.ExcelWriter(output_file)
filtered_rows.to_excel(writer, sheet_name='sale_amount_gt2000', index=False)
writer.save()

  • loc基于列名选取所有sheet的第2和第5列

pandas_value_meets_condition_all_worksheets.py


import pandas as pd

input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"

data_frame = pd.read_excel(input_file, sheet_name=None, index_col=None)

column_output = []
for worksheet_name, data in data_frame.items():
    column_output.append(data.loc[:, ['Customer Name', 'Sale Amount']])
selected_columns = pd.concat(column_output, axis=0, ignore_index=True)

writer = pd.ExcelWriter(output_file)
selected_columns.to_excel(
        writer, sheet_name='selected_columns_all_worksheets', index=False)
writer.save()

操作部分sheet

  • 选取销售额大于2000的行

pandas_value_meets_condition_set_of_worksheets.py


import pandas as pd

input_file = "sales_2013.xlsx"
output_file = "pandas_output.xls"

my_sheets = [0,1]
threshold = 1900.0

data_frame = pd.read_excel(input_file, sheetname=my_sheets, index_col=None)

row_list = []
for worksheet_name, data in data_frame.items():
    row_list.append(data[data['Sale Amount'].replace('$', '').
                         replace(',', '').astype(float) > threshold])
filtered_rows = pd.concat(row_list, axis=0, ignore_index=True)

writer = pd.ExcelWriter(output_file)
filtered_rows.to_excel(writer, sheet_name='set_of_worksheets', index=False)
writer.save()

处理多个excel

  • 连接concat

pandas_concat_data_from_multiple_workbooks.py


import pandas as pd
import glob
import os

input_path = "/media/andrew/6446FA2346F9F5A0/code/foundations-for-analytics-\
with-python/excel"
output_file = "pandas_output.xls"

all_workbooks = glob.glob(os.path.join(input_path,'*.xls*'))
data_frames = []
for workbook in all_workbooks:
    all_worksheets = pd.read_excel(
            workbook, sheet_name=None, index_col=None)
    for worksheet_name, data in all_worksheets.items():
        data_frames.append(data)
all_data_concatenated = pd.concat(data_frames, axis=0, ignore_index=True)

writer = pd.ExcelWriter(output_file)
all_data_concatenated.to_excel(
        writer, sheet_name='all_data_all_workbooks', index=False)
writer.save()
  • 求和

pandas_sum_average_multiple_workbooks.py


import pandas as pd
import glob
import os

input_path = "/media/andrew/6446FA2346F9F5A0/code/foundations-for-analytics-\
with-python/excel"
output_file = "pandas_output.xls"

all_workbooks = glob.glob(os.path.join(input_path,'*.xls*'))
data_frames = []
for workbook in all_workbooks:
    all_worksheets = pd.read_excel(workbook, sheetname=None, index_col=None)
    workbook_total_sales = []
    workbook_number_of_sales = []
    worksheet_data_frames = []
    worksheets_data_frame = None
    workbook_data_frame = None
    for worksheet_name, data in all_worksheets.items():
        total_sales = pd.DataFrame(
            [float(str(value).strip('$').replace(',','')) for value in 
             data.ix[:, 'Sale Amount']]).sum()
        number_of_sales = len(data.loc[:, 'Sale Amount'])
        average_sales = pd.DataFrame(total_sales / number_of_sales)

        workbook_total_sales.append(total_sales)
        workbook_number_of_sales.append(number_of_sales)

        data = {'workbook': os.path.basename(workbook),
                'worksheet': worksheet_name,
                'worksheet_total': total_sales,
                'worksheet_average': average_sales}

        worksheet_data_frames.append(
            pd.DataFrame(data, 
                         columns=['workbook', 'worksheet', 'worksheet_total', 
                                  'worksheet_average']))
    worksheets_data_frame = pd.concat(
        worksheet_data_frames, axis=0, ignore_index=True)

    workbook_total = pd.DataFrame(workbook_total_sales).sum()
    workbook_total_number_of_sales = pd.DataFrame(
        workbook_number_of_sales).sum()
    workbook_average = pd.DataFrame(
        workbook_total / workbook_total_number_of_sales)

    workbook_stats = {'workbook': os.path.basename(workbook),
                      'workbook_total': workbook_total,
                      'workbook_average': workbook_average}

    workbook_stats = pd.DataFrame(workbook_stats, 
                                  columns=['workbook', 'workbook_total',
                                           'workbook_average'])
    workbook_data_frame = pd.merge(
        worksheets_data_frame, workbook_stats, on='workbook', how='left')
    data_frames.append(workbook_data_frame)

all_data_concatenated = pd.concat(data_frames, axis=0, ignore_index=True)

writer = pd.ExcelWriter(output_file)
all_data_concatenated.to_excel(
    writer, sheet_name='sums_and_averages', index=False)
writer.save()

使用excel绘制图表


import pandas as pd
import random

# Some sample data to plot.
cat_1 = ['y1', 'y2', 'y3', 'y4']
index_1 = range(0, 21, 1)
multi_iter1 = {'index': index_1}
for cat in cat_1:
    multi_iter1[cat] = [random.randint(10, 100) for x in index_1]

# Create a Pandas dataframe from the data.
index_2 = multi_iter1.pop('index')
df = pd.DataFrame(multi_iter1, index=index_2)
df = df.reindex(columns=sorted(df.columns))

# Create a Pandas Excel writer using XlsxWriter as the engine.
excel_file = 'legend.xlsx'
sheet_name = 'Sheet1'

writer = pd.ExcelWriter(excel_file, engine='xlsxwriter')
df.to_excel(writer, sheet_name=sheet_name)

# Access the XlsxWriter workbook and worksheet objects from the dataframe.
workbook = writer.book
worksheet = writer.sheets[sheet_name]

# Create a chart object.
chart = workbook.add_chart({'type': 'line'})

# Configure the series of the chart from the dataframe data.
for i in range(len(cat_1)):
    col = i + 1
    chart.add_series({
        'name':       ['Sheet1', 0, col],
        'categories': ['Sheet1', 1, 0, 21, 0],
        'values':     ['Sheet1', 1, col, 21, col],
    })

# Configure the chart axes.
chart.set_x_axis({'name': 'Index'})
chart.set_y_axis({'name': 'Value', 'major_gridlines': {'visible': False}})

# Insert the chart into the worksheet.
worksheet.insert_chart('G2', chart)

# Close the Pandas Excel writer and output the Excel file.
writer.save()

讨论 钉钉免费群21745728 qq群144081101 567351477

参考资料:http://pandas-xlsxwriter-charts.readthedocs.io/

相关文章
|
20天前
|
人工智能 Python
读取excel工具:openpyxl | AI应用开发
`openpyxl` 是一个 Python 库,专门用于读写 Excel 2010 xlsx/xlsm/xltx/xltm 文件。它是处理 Excel 文件的强大工具,可以让你在不需要安装 Excel 软件的情况下,对 Excel 文件进行创建、修改、读取和写入操作【10月更文挑战第3天】
52 0
|
3天前
|
数据处理
在Excel中,通配符是一种强大的工具
【10月更文挑战第23天】在Excel中,通配符是一种强大的工具
9 4
|
5天前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
19 2
|
5天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
10 2
|
21天前
|
机器学习/深度学习 数据采集 算法
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
【10月更文挑战第5天】随着数据科学和机器学习领域的快速发展,处理大规模数据集的能力变得至关重要。Python凭借其强大的生态系统,尤其是NumPy、Pandas和SciPy等库的支持,在这个领域占据了重要地位。本文将深入探讨这些库如何帮助科学家和工程师高效地进行数据分析,并通过实际案例来展示它们的一些高级应用。
39 0
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
|
28天前
|
数据采集 数据挖掘 API
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
在Python数据分析的世界里,Pandas和NumPy无疑是两颗璀璨的明星,它们为数据科学家和工程师提供了强大而灵活的工具集,用于处理、分析和探索数据。今天,我们将一起深入探索这两个库的高级功能,看看它们如何成为数据分析的加速器。
33 1
|
2月前
|
数据挖掘 Python
Pandas实战(1):电商购物用户行为数据分析
Pandas实战(1):电商购物用户行为数据分析
66 1
|
2月前
|
数据挖掘 Python
Pandas实战(3):电商购物用户行为数据分析
Pandas实战(3):电商购物用户行为数据分析
84 1
|
2月前
|
数据挖掘 Python
Pandas实战(2):电商购物用户行为数据分析
Pandas实战(2):电商购物用户行为数据分析
47 1
|
23天前
|
数据采集 数据可视化 数据挖掘
Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
【10月更文挑战第3天】Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
64 0