AI芯片井喷式发展,未来是否会沦为泡沫产业。

简介:

大家都知道,如今的人工智能正在大踏步地走进我们生活的各个领域,从智慧金融、智能家居到智能教育、智能医疗,人工智能正在各个垂直领域全面开花,而在这大繁华的背后
绝对离不开基础层的软硬件支撑和技术层的成熟。AI芯片无疑是近年来最火热的话题之一,不仅英伟达、谷歌等国际巨头相继推出新产品,国内百度、阿里等也纷纷布局这一领域,诞生了寒武纪等AI芯片创业公司。

AI芯片遍地开花

从2017年下半年到今年上半年,国内不少AI初创企业纷纷推出了自己的芯片。去年12月,地平线推出首款嵌入式人工智能视觉芯片——面向自动驾驶的征程处理器和面向智能摄像头的旭日处理器;2018年5月云知声在北京召开发布会,推出其第一代UniOne物联网AI芯片及解决方案。仅仅在这两个月内,就有多家公司发布AI芯片或模组。出门问问正式发布了AI语音芯片模组“问芯”;Rokid发布KAMINO18AI语音专用芯片;思必驰也宣布将在下半年推出AI芯片……

按使用场景划分,AI芯片主要分为云端和终端芯片。而目前主流的深度学习人工神经网络算法包括训练和推断两个环节。由于训练侧需要大量数据去训练人工神经网络,因此训练主要在云端进行。云端追求高性能,开发成本更大,终端更侧重低成本和低功耗,目前中国AI初创企业主要布局在此。

AI芯片之路到底还要走多久?
芯片行业是一个高投入、高风险、慢回报的行业。与软件可以修正和快速迭代不同,芯片的迭代周期会很长。从云知声、出门问问发布的时间表看,芯片从设计到量产都只有3年多时间,这与“一个芯片产业需要几十年技术沉淀”的普遍印象相差甚远。
物极必反,当一个产业以迅雷不及掩耳之势发展,行业资深人士也会对其产生怀疑。不少案例表示许多产业经济是来的快去的也快,比如之前火热的共享经济也走向了衰退,那么对于AI的高速发展,也同样值得忧虑。
目前国内AI型企业已经多达500余家,随着其火热程度的加深,业内越来越多人开始担忧其是否为“泡沫产业”。对此,清华大学微电子研究所所长魏少军教授曾表示,这是资本助推的结果,一旦钱烧完,就很有可能出现问题;而且在资本的逐利本性下,也是难以为继的。他认为虽然 AI 很热,但是并没有真正落地。实际上,并不是所有的技术都一定需要 AI,很多情况下 AI 起到的是增强的作用;当前人们拥抱 AI,但未来可能会失望。
据亿欧智库《2018中国人工智能商业落地研究报告》显示,2017年中国AI创业公司获得的累计融资超过500亿元,但2017年中国AI商业落地100强创业公司累计产生的收入却不足100亿元。可见行业投融资的热情不减,主要是看中人工智能与各行业结合的前景广阔。 

相关文章
|
7月前
|
传感器 机器学习/深度学习 算法
无人机视角yolo多模态、模型剪枝、国产AI芯片部署
无人机视角yolo多模态、模型剪枝、国产AI芯片部署
无人机视角yolo多模态、模型剪枝、国产AI芯片部署
|
7月前
|
人工智能 芯片 异构计算
英伟达要小心了!爆火的Groq芯片能翻盘吗?AI推理速度「吊打」英伟达?
随着科技的飞速发展,人工智能公司Groq挑战了英伟达的王者地位,其AI芯片不仅展现出卓越的实力,还拥有巨大的潜力。Groq设计了一种独特的推理代币经济学模式,该模式背后牵动着众多因素,却也引发了深度思考:新的技术突破来自何处?中国该如何应对并抓住变革中的机遇?Groq成本如何评估?这些都是值得研究和思考的问题。
|
24天前
|
人工智能 并行计算 程序员
【AI系统】SIMD & SIMT 与芯片架构
本文深入解析了SIMD(单指令多数据)与SIMT(单指令多线程)的计算本质及其在AI芯片中的应用,特别是NVIDIA CUDA如何实现这两种计算模式。SIMD通过单指令对多个数据进行操作,提高数据并行处理能力;而SIMT则在GPU上实现了多线程并行,每个线程独立执行相同指令,增强了灵活性和性能。文章详细探讨了两者的硬件结构、编程模型及硬件执行模型的区别与联系,为理解现代AI计算架构提供了理论基础。
63 12
|
21天前
|
人工智能 数据安全/隐私保护 数据中心
“芯片围城”下国产AI要放缓?答案或截然相反
12月2日,美国对华实施新一轮出口限制,将140余家中国企业列入贸易限制清单。对此,中国多个行业协会呼吁国内企业谨慎选择美国芯片。尽管受限企业表示影响有限,但此事件引发了关于AI领域芯片供应的担忧。华为云推出的昇腾AI云服务,提供全栈自主的算力解决方案,包括大规模算力集群、AI框架等,旨在应对AI算力需求,确保算力供给的稳定性和安全性,助力中国AI产业持续发展。
|
26天前
|
机器学习/深度学习 人工智能 并行计算
【AI系统】芯片的编程体系
本文探讨了SIMD与SIMT的区别及联系,分析了SIMT与CUDA编程的关系,深入讨论了GPU在SIMT编程的本质及其与DSA架构的关系。文章还概述了AI芯片的并行分类与并行处理硬件架构,强调了理解AI芯片编程体系的重要性,旨在帮助开发者更高效地利用AI芯片算力,促进生态繁荣。
48 0
|
26天前
|
机器学习/深度学习 存储 人工智能
【AI系统】谷歌 TPU v2 训练芯片
2017年,谷歌推出TPU v2,专为神经网络训练设计,标志着从推理转向训练的重大转变。TPU v2引入多项创新,包括Vector Memory、Vector Unit、MXU及HBM内存,以应对训练中数据并行、计算复杂度高等挑战。其高效互联技术构建了TPU v2超级计算机,显著提升大规模模型训练的效率和性能。
44 0
|
2月前
|
人工智能 安全 芯片
【通义】AI视界|谷歌 Tensor G5 芯片揭秘:1+5+2 八核 CPU,支持光线追踪
本文由【通义】自动生成,涵盖黄仁勋宣布台积电协助修复Blackwell AI芯片设计缺陷、苹果分阶段推出Apple Intelligence、OpenAI保守派老将辞职、英伟达深化与印度合作推出印地语AI模型,以及谷歌Tensor G5芯片支持光线追踪等最新科技资讯。点击链接或扫描二维码,获取更多精彩内容。
|
2月前
|
人工智能 机器人 云计算
【通义】AI视界|OpenAI据称已计划联手博通和台积电共同打造自研芯片
本文由【通义】自动生成,涵盖苹果iOS 18.2将集成ChatGPT、OpenAI联手博通和台积电自研芯片、微软指责谷歌发起影子运动、英伟达高管预测AI将呈现人类形态、OpenAI董事会主席的初创公司估值达45亿美元等热点资讯。更多精彩内容,请访问通通知道。
|
2月前
|
数据采集 人工智能 搜索推荐
【通义】AI视界|迎接Apple Intelligence,Mac家族进入M4芯片时代
本文概览了近期科技领域的五大热点:苹果宣布Apple Intelligence将于2025年4月支持中文;新款Mac将搭载M4芯片;ChatGPT周活跃用户达2.5亿,主要收入来自订阅;Meta开发AI搜索引擎减少对外部依赖;周鸿祎支持AI发展但反对构建超级智能。更多详情,访问通义平台。
|
3月前
|
机器学习/深度学习 人工智能 自动驾驶
【通义】AI视界|马斯克:特斯拉计划2025年末批量装备AI训练芯片Dojo2
本文精选了24小时内的重要AI新闻,包括特斯拉计划2025年批量装备Dojo 2芯片、英伟达股价大涨、谷歌联合创始人积极参与AI项目、中科院女工程师开源AI模型保护女性,以及快手旗下可灵AI与蓝色光标达成战略合作。更多内容敬请访问通义官网体验。

热门文章

最新文章