SSD:TensorFlow中的单次多重检测器

简介: SSD:TensorFlow中的单次多重检测器SSD Notebook 包含 SSD TensorFlow 的最小示例。 很快,就检测出了两个主要步骤:在图像上运行SSD网络,并使用通用算法(top-k滤波和非最大抑制算法)对输出进行后处理。

SSD:TensorFlow中的单次多重检测器

SSD Notebook 包含 SSD TensorFlow 的最小示例。 很快,就检测出了两个主要步骤:在图像上运行SSD网络,并使用通用算法(top-k滤波和非最大抑制算法)对输出进行后处理。

以下是成功检测输出的两个示例:

为了运行这个 Notebook 你需要先解压 checkpoint files 在 ./checkpoint

unzip ssd_300_vgg.ckpt.zip

然后开始一个 jupyter Notebook

jupyter notebook notebooks/ssd_notebook.ipynb

项目地址:https://github.com/balancap/SSD-Tensorflow

更多 TensorFlow 教程:http://www.tensorflownews.com/

目录
相关文章
|
机器学习/深度学习 XML 人工智能
基于Tensorflow2.x Object Detection API构建自定义物体检测器
基于Tensorflow2.x Object Detection API构建自定义物体检测器的保姆级教程,详细地描述了代码框架结构、数据集的标准方法,标注文件的数据处理、模型流水线的配置、模型的训练、评估、推理全流程。
349 1
|
固态存储 算法 TensorFlow
DL之SSD:基于tensorflow利用SSD算法实现目标检测(21类)
DL之SSD:基于tensorflow利用SSD算法实现目标检测(21类)
DL之SSD:基于tensorflow利用SSD算法实现目标检测(21类)
|
XML TensorFlow API
基于Tensorflow2.x Object Detection API构建自定义物体检测器
tensorflow object detection api一个框架,它可以很容易地构建、训练和部署对象检测模型,并且是一个提供了众多基于COCO数据集、Kitti数据集、Open Images数据集、AVA v2.1数据集和iNaturalist物种检测数据集上提供预先训练的对象检测模型集合。
203 0
|
固态存储 算法 TensorFlow
DL之SSD:基于tensorflow利用SSD算法实现目标检测(21类)
DL之SSD:基于tensorflow利用SSD算法实现目标检测(21类)
DL之SSD:基于tensorflow利用SSD算法实现目标检测(21类)
|
机器学习/深度学习 测试技术 API
实践操作:六步教你如何用开源框架Tensorflow对象检测API构建一个玩具检测器
TensorFlow对象检测API是一个建立在TensorFlow之上的开源框架,可以轻松构建,训练和部署对象检测模型。 到目前为止,API的性能给我留下了深刻的印象。在这篇文章中,我将API的对象设定为一个可以运动的玩具。
3046 0
|
11天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
143 55
|
29天前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
70 5
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
84 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
93 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
95 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型

相关实验场景

更多