损失函数综述

简介: 损失函数(loss function)又叫做代价函数(cost function),是用来评估模型的预测值与真实值不一致的程度,也是神经网络中优化的目标函数,神经网络训练或者优化的过程就是最小化损失函数的过程,损失函数越小,说明模型的预测值就越接近真是值,模型的健壮性也就越好。

损失函数(loss function)又叫做代价函数(cost function),是用来评估模型的预测值与真实值不一致的程度,也是神经网络中优化的目标函数,神经网络训练或者优化的过程就是最小化损失函数的过程,损失函数越小,说明模型的预测值就越接近真是值,模型的健壮性也就越好。

常见的损失函数有以下几种:

(1) 0-1损失函数(0-1 lossfunction):

0-1损失函数是最为简单的一种损失函数,多适用于分类问题中,如果预测值与目标值不相等,说明预测错误,输出值为1;如果预测值与目标值相同,说明预测正确,输出为0,言外之意没有损失。其数学公式可表示为:

由于0-1损失函数过于理想化、严格化,且数学性质不是很好,难以优化,所以在实际问题中,我们经常会用以下的损失函数进行代替。

(2)感知损失函数(Perceptron Loss):
感知损失函数是对0-1损失函数的改进,它并不会像0-1损失函数那样严格,哪怕预测值为0.99,真实值为1,都会认为是错误的;而是给一个误差区间,只要在误差区间内,就认为是正确的。其数学公式可表示为:

(3)平方损失函数(quadratic loss function):

顾名思义,平方损失函数是指预测值与真实值差值的平方。损失越大,说明预测值与真实值的差值越大。平方损失函数多用于线性回归任务中,其数学公式为:

接下来,我们延伸到样本个数为N的情况,此时的平方损失函数为:

(4)Hinge损失函数(hinge loss function):

Hinge损失函数通常适用于二分类的场景中,可以用来解决间隔最大化的问题,常应用于著名的SVM算法中。其数学公式为:

其中在上式中,t是目标值{-1,+1},y为预测值的输出,取值范围在(-1,1)之间。

(5)对数损失函数(Log Loss):

对数损失函数也是常见的一种损失函数,常用于逻辑回归问题中,其标准形式为:

上式中,y为已知分类的类别,x为样本值,我们需要让概率p(y|x)达到最大值,也就是说我们要求一个参数值,使得输出的目前这组数据的概率值最大。因为概率P(Y|X)的取值范围为[0,1],log(x)函数在区间[0,1]的取值为负数,所以为了保证损失值为正数要在log函数前加负号。

(6)交叉熵损失函数(cross-entropy loss function):

交叉熵损失函数本质上也是一种对数损失函数,常用于多分类问题中。其数学公式为:

注意:公式中的x表示样本,y代表预测的输出,a为实际输出,n表示样本总数量。交叉熵损失函数常用于当sigmoid函数作为激活函数的情景,因为它可以完美解决平方损失函数权重更新过慢的问题。

以上为大家介绍了较为常见的一些损失函数以及使用场景。接下来的文章中会结合经典的实例——MNIST手写数字识别,为大家讲解如何在深度学习实际的项目中运用激活函数、损失函数。

 

 

目录
相关文章
|
2月前
|
机器学习/深度学习 测试技术
机器学习第6天:线性回归模型正则化
机器学习第6天:线性回归模型正则化
29 0
|
6月前
|
机器学习/深度学习 算法 大数据
机器学习线性回归优化损失函数
机器学习线性回归优化损失函数
45 0
|
6月前
|
机器学习/深度学习 计算机视觉
深度学习常见的损失函数
深度学习常见的损失函数
73 1
深度学习常见的损失函数
|
10月前
|
机器学习/深度学习 算法 Serverless
【机器学习算法】1、线性回归——深层理解(二)
【机器学习算法】1、线性回归——深层理解(二)
59 0
|
10月前
|
机器学习/深度学习 算法
【机器学习算法】1、线性回归——深层理解(一)
【机器学习算法】1、线性回归——深层理解(一)
51 0
|
10月前
|
机器学习/深度学习 人工智能 PyTorch
【Pytorch神经网络理论篇】 34 样本均衡+分类模型常见损失函数
Sampler类中有一个派生的权重采样类WeightedRandomSampler,能够在加载数据时,按照指定的概率进行随机顺序采样。
224 0
|
10月前
|
机器学习/深度学习 人工智能 PyTorch
【Pytorch神经网络理论篇】 09 神经网络模块中的损失函数
根据损失值,使用链式反向求导的方法,依次计算出模型中每个参数/权重的梯度
130 0
|
10月前
|
机器学习/深度学习 存储 人工智能
【Pytorch神经网络基础理论篇】 08 Softmax 回归 + 损失函数 + 图片分类数据集
【Pytorch神经网络基础理论篇】 08 Softmax 回归 + 损失函数 + 图片分类数据集
139 0
|
11月前
|
机器学习/深度学习 PyTorch 算法框架/工具
深度学习05】 交叉熵损失函数
不同的信息,含有不同的信息量,假设下列对阵表中阿根廷的夺冠概率是1/8,A同学告诉我阿根廷夺冠了,那么这个信息量就很大了(因为它包括了阿根廷进了四强,决赛);B同学告诉我阿根廷进决赛了,那么这个信息量就较小。
90 0
|
机器学习/深度学习 人工智能 vr&ar
【机器学习】线性回归——岭回归解决过拟合问题(理论+图解+公式推导)
【机器学习】线性回归——岭回归解决过拟合问题(理论+图解+公式推导)
148 0
【机器学习】线性回归——岭回归解决过拟合问题(理论+图解+公式推导)